SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Herpin Amaury) "

Sökning: WFRF:(Herpin Amaury)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Feron, Romain, et al. (författare)
  • RADSex : A computational workflow to study sex determination using restriction site-associated DNA sequencing data
  • 2021
  • Ingår i: Molecular Ecology Resources. - : John Wiley & Sons. - 1755-098X .- 1755-0998. ; 21:5, s. 1715-1731
  • Tidskriftsartikel (refereegranskat)abstract
    • The study of sex determination and sex chromosome organization in nonmodel species has long been technically challenging, but new sequencing methodologies now enable precise and high-throughput identification of sex-specific genomic sequences. In particular, restriction site-associated DNA sequencing (RAD-Seq) is being extensively applied to explore sex determination systems in many plant and animal species. However, software specifically designed to search for and visualize sex-biased markers using RAD-Seq data is lacking. Here, we present RADSex, a computational analysis workflow designed to study the genetic basis of sex determination using RAD-Seq data. RADSex is simple to use, requires few computational resources, makes no prior assumptions about the type of sex-determination system or structure of the sex locus, and offers convenient visualization through a dedicated R package. To demonstrate the functionality of RADSex, we re-analysed a published data set of Japanese medaka, Oryzias latipes, where we uncovered a previously unknown Y chromosome polymorphism. We then used RADSex to analyse new RAD-Seq data sets from 15 fish species spanning multiple taxonomic orders. We identified the sex determination system and sex-specific markers in six of these species, five of which had no known sex-markers prior to this study. We show that RADSex greatly facilitates the study of sex determination systems in nonmodel species thanks to its speed of analyses, low resource usage, ease of application and visualization options. Furthermore, our analysis of new data sets from 15 species provides new insights on sex determination in fish.
  •  
2.
  • Pan, Qiaowei, et al. (författare)
  • Vertebrate sex-determining genes play musical chairs
  • 2016
  • Ingår i: Comptes rendus. Biologies. - : Elsevier BV. - 1631-0691 .- 1768-3238. ; 339:7-8, s. 258-262
  • Tidskriftsartikel (refereegranskat)abstract
    • Sexual reproduction is one of the most highly conserved processes in evolution. However, the genetic and cellular mechanisms making the decision of whether the undifferentiated gonad of animal embryos develops either towards male or female are manifold and quite diverse. In vertebrates, sex-determining mechanisms range from environmental to simple or complex genetic mechanisms and different mechanisms have evolved repeatedly and independently. In species with simple genetic sex-determination, master sex-determining genes lying on sex chromosomes drive the gonadal differentiation process by switching on a developmental program, which ultimately leads to testicular or ovarian differentiation. So far, very few sex-determining genes have been identified in vertebrates and apart from mammals and birds, these genes are apparently not conserved over a larger number of related orders, families, genera, or even species. To fill this knowledge gap and to better explore genetic sex-determination, we propose a strategy (RAD-Sex) that makes use of next-generation sequencing technology to identify genetic markers that define sex-specific segments of the male or female genome.
  •  
3.
  • Rafati, Nima, et al. (författare)
  • Reconstruction of the birth of a male sex chromosome present in Atlantic herring
  • 2020
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy Of Sciences. - 0027-8424 .- 1091-6490. ; 117:39, s. 24359-24368
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanisms underlying sex determination are astonishingly plastic. Particularly the triggers for the molecular machinery, which recalls either the male or female developmental program, are highly variable and have evolved independently and repeatedly. Fish show a huge variety of sex determination systems, including both genetic and environmental triggers. The advent of sex chromosomes is assumed to stabilize genetic sex determination. However, because sex chromosomes are notoriously cluttered with repetitive DNA and pseudogenes, the study of their evolution is hampered. Here we reconstruct the birth of a Y chromosome present in the Atlantic herring. The region is tiny (230 kb) and contains only three intact genes. The candidate male-determining gene BMPR1BBY encodes a truncated form of a BMP1B receptor, which originated by gene duplication and translocation and underwent rapid protein evolution. BMPR1BBY phosphorylates SMADs in the absence of ligand and thus has the potential to induce testis formation. The Y region also contains two genes encoding subunits of the sperm-specific Ca2+ channel CatSper required for male fertility. The herring Y chromosome conforms with a characteristic feature of many sex chromosomes, namely, suppressed recombination between a sex-determining factor and genes that are beneficial for the given sex. However, the herring Y differs from other sex chromosomes in that suppression of recombination is restricted to an ∼500-kb region harboring the male-specific and sex-associated regions. As a consequence, any degeneration on the herring Y chromosome is restricted to those genes located in the small region affected by suppressed recombination.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy