SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hesse K.) "

Sökning: WFRF:(Hesse K.)

  • Resultat 1-10 av 54
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aad, G., et al. (författare)
  • 2012
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Munk, P., et al. (författare)
  • Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Antimicrobial resistance (AMR) is a major threat to global health. Understanding the emergence, evolution, and transmission of individual antibiotic resistance genes (ARGs) is essential to develop sustainable strategies combatting this threat. Here, we use metagenomic sequencing to analyse ARGs in 757 sewage samples from 243 cities in 101 countries, collected from 2016 to 2019. We find regional patterns in resistomes, and these differ between subsets corresponding to drug classes and are partly driven by taxonomic variation. The genetic environments of 49 common ARGs are highly diverse, with most common ARGs carried by multiple distinct genomic contexts globally and sometimes on plasmids. Analysis of flanking sequence revealed ARG-specific patterns of dispersal limitation and global transmission. Our data furthermore suggest certain geographies are more prone to transmission events and should receive additional attention.
  •  
3.
  • Faatz, B., et al. (författare)
  • Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator
  • 2016
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 18
  • Tidskriftsartikel (refereegranskat)abstract
    • Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the facility a prime candidate to realize the next step in FELs-dividing the electron pulse trains into several FEL lines and delivering photon pulses to several users at the same time. Hence, FLASH has been extended with a second undulator line and self-amplified spontaneous emission (SASE) is demonstrated in both FELs simultaneously. FLASH can now deliver MHz pulse trains to two user experiments in parallel with individually selected photon beam characteristics. First results of the capabilities of this extension are shown with emphasis on independent variation of wavelength, repetition rate, and photon pulse length.
  •  
4.
  • Fukui, A., et al. (författare)
  • TOI-1749: an M dwarf with a Trio of Planets including a Near-resonant Pair
  • 2021
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 162:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of one super-Earth- (TOI-1749b) and two sub-Neptune-sized planets (TOI-1749c and TOI-1749d) transiting an early M dwarf at a distance of 100 pc, which were first identified as planetary candidates using data from the TESS photometric survey. We have followed up this system from the ground by means of multiband transit photometry, adaptive optics imaging, and low-resolution spectroscopy, from which we have validated the planetary nature of the candidates. We find that TOI-1749b, c, and d have orbital periods of 2.39, 4.49, and 9.05 days, and radii of 1.4, 2.1, and 2.5 R (circle plus), respectively. We also place 95% confidence upper limits on the masses of 57, 14, and 15 M (circle plus) for TOI-1749b, c, and d, respectively, from transit timing variations. The periods, sizes, and tentative masses of these planets are in line with a scenario in which all three planets initially had a hydrogen envelope on top of a rocky core, and only the envelope of the innermost planet has been stripped away by photoevaporation and/or core-powered mass-loss mechanisms. These planets are similar to other planetary trios found around M dwarfs, such as TOI-175b,c,d and TOI-270b,c,d, in the sense that the outer pair has a period ratio within 1% of 2. Such a characteristic orbital configuration, in which an additional planet is located interior to a near 2:1 period-ratio pair, is relatively rare around FGK dwarfs.
  •  
5.
  • Rauer, H., et al. (författare)
  • The PLATO 2.0 mission
  • 2014
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 38:1-2, s. 249-330
  • Tidskriftsartikel (refereegranskat)abstract
    • PLATO 2.0 has recently been selected for ESA's M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s cadence) providing a wide field-of-view (2232 deg(2)) and a large photometric magnitude range (4-16 mag). It focuses on bright (4-11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4-10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2-3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e. g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such a low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmospheres. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA's Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.
  •  
6.
  • Luque, R., et al. (författare)
  • A resonant sextuplet of sub-Neptunes transiting the bright star HD 110067
  • 2023
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 623:7989, s. 932-937
  • Tidskriftsartikel (refereegranskat)abstract
    • Planets with radii between that of the Earth and Neptune (hereafter referred to as ‘sub-Neptunes’) are found in close-in orbits around more than half of all Sun-like stars 1,2. However, their composition, formation and evolution remain poorly understood 3. The study of multiplanetary systems offers an opportunity to investigate the outcomes of planet formation and evolution while controlling for initial conditions and environment. Those in resonance (with their orbital periods related by a ratio of small integers) are particularly valuable because they imply a system architecture practically unchanged since its birth. Here we present the observations of six transiting planets around the bright nearby star HD 110067. We find that the planets follow a chain of resonant orbits. A dynamical study of the innermost planet triplet allowed the prediction and later confirmation of the orbits of the rest of the planets in the system. The six planets are found to be sub-Neptunes with radii ranging from 1.94R ⊕ to 2.85R ⊕. Three of the planets have measured masses, yielding low bulk densities that suggest the presence of large hydrogen-dominated atmospheres.
  •  
7.
  • Burch, J. L., et al. (författare)
  • Electron-scale measurements of magnetic reconnection in space
  • 2016
  • Ingår i: Science. - : AMER ASSOC ADVANCEMENT SCIENCE. - 0036-8075 .- 1095-9203. ; 352:6290, s. 1189-
  • Forskningsöversikt (refereegranskat)abstract
    • Magnetic reconnection is a fundamental physical process in plasmas whereby stored magnetic energy is converted into heat and kinetic energy of charged particles. Reconnection occurs in many astrophysical plasma environments and in laboratory plasmas. Using measurements with very high time resolution, NASA's Magnetospheric Multiscale (MMS) mission has found direct evidence for electron demagnetization and acceleration at sites along the sunward boundary of Earth's magnetosphere where the interplanetary magnetic field reconnects with the terrestrial magnetic field. We have (i) observed the conversion of magnetic energy to particle energy; (ii) measured the electric field and current, which together cause the dissipation of magnetic energy; and (iii) identified the electron population that carries the current as a result of demagnetization and acceleration within the reconnection diffusion/dissipation region.
  •  
8.
  • Codilean, A. T., et al. (författare)
  • OCTOPUS database (v.2)
  • 2022
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 14:8, s. 3695-3713
  • Tidskriftsartikel (refereegranskat)abstract
    • OCTOPUS v.2 is an Open Geospatial Consortium (OGC) compliant web-enabled database that allows users to visualise, query, and download cosmogenic radionuclide, luminescence, and radiocarbon ages and denudation rates associated with erosional landscapes, Quaternary depositional landforms, and archaeological records, along with ancillary geospatial (vector and raster) data layers. The database follows the FAIR (Findability, Accessibility, Interoperability, and Reuse) data principles and is based on open-source software deployed on the Google Cloud Platform. Data stored in the database can be accessed via a custom-built web interface and via desktop geographic information system (GIS) applications that support OGC data access protocols. OCTOPUS v.2 hosts five major data collections. CRN Denudation and ExpAge consist of published cosmogenic Be-10 and Al-26 measurements in modern fluvial sediment and glacial samples respectively. Both collections have a global extent; however, in addition to geospatial vector layers, CRN Denudation also incorporates raster layers, including a digital elevation model, gradient raster, flow direction and flow accumulation rasters, atmospheric pressure raster, and CRN production scaling and topographic shielding factor rasters. SahulSed consists of published optically stimulated luminescence (OSL) and thermoluminescence (TL) ages for fluvial, aeolian, and lacustrine sedimentary records across the Australian mainland and Tasmania. SahulArch consists of published OSL, TL, and radiocarbon ages for archaeological records, and FosSahul consists of published late-Quaternary records of direct and indirect non-human vertebrate (mega)fauna fossil ages that have been systematically quality rated. Supporting data are comprehensive and include bibliographic, contextual, and sample-preparation- and measurement-related information. In the case of cosmogenic radionuclide data, OCTOPUS also includes all necessary information and input files for the recalculation of denudation rates using the open-source program CAIRN. OCTOPUS v.2 and its associated data curation framework allow for valuable legacy data to be harnessed that would otherwise be lost to the research community. The database can be accessed at https://octopusdata.org (last access: 1 July 2022). The individual data collections can also be accessed via their respective digital object identifiers (DOIs) (see Table 1).
  •  
9.
  • Fuselier, S. A., et al. (författare)
  • Mass Loading the Earth's Dayside Magnetopause Boundary Layer and Its Effect on Magnetic Reconnection
  • 2019
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 46:12, s. 6204-6213
  • Tidskriftsartikel (refereegranskat)abstract
    • When the interplanetary magnetic field is northward for a period of time, O+ from the high-latitude ionosphere escapes along reconnected magnetic field lines into the dayside magnetopause boundary layer. Dual-lobe reconnection closes these field lines, which traps O+ and mass loads the boundary layer. This O+ is an additional source of magnetospheric plasma that interacts with magnetosheath plasma through magnetic reconnection. This mass loading and interaction is illustrated through analysis of a magnetopause crossing by the Magnetospheric Multiscale spacecraft. While in the O+-rich boundary layer, the interplanetary magnetic field turns southward. As the Magnetospheric Multiscale spacecraft cross the high-shear magnetopause, reconnection signatures are observed. While the reconnection rate is likely reduced by the mass loading, reconnection is not suppressed at the magnetopause. The high-latitude dayside ionosphere is therefore a source of magnetospheric ions that contributes often to transient reduction in the reconnection rate at the dayside magnetopause.
  •  
10.
  • Genestreti, K. J., et al. (författare)
  • MMS Observation of Asymmetric Reconnection Supported by 3-D Electron Pressure Divergence
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 123:3, s. 1806-1821
  • Tidskriftsartikel (refereegranskat)abstract
    • We identify the electron diffusion region (EDR) of a guide field dayside reconnection site encountered by the Magnetospheric Multiscale (MMS) mission and estimate the terms in generalized Ohm's law that controlled energy conversion near the X-point. MMS crossed the moderate-shear (similar to 130 degrees) magnetopause southward of the exact X-point. MMS likely entered the magnetopause far from the X-point, outside the EDR, as the size of the reconnection layer was less than but comparable to the magnetosheath proton gyroradius, and also as anisotropic gyrotropic "outflow" crescent electron distributions were observed. MMS then approached the X-point, where all four spacecraft simultaneously observed signatures of the EDR, for example, an intense out-of-plane electron current, moderate electron agyrotropy, intense electron anisotropy, nonideal electric fields, and nonideal energy conversion. We find that the electric field associated with the nonideal energy conversion is (a) well described by the sum of the electron inertial and pressure divergence terms in generalized Ohms law though (b) the pressure divergence term dominates the inertial term by roughly a factor of 5:1, (c) both the gyrotropic and agyrotropic pressure forces contribute to energy conversion at the X-point, and (d) both out-of-the-reconnection-plane gradients (partial derivative/partial derivative M) and in-plane (partial derivative/partial derivative L, N) in the pressure tensor contribute to energy conversion near the X-point. This indicates that this EDR had some electron-scale structure in the out-of-plane direction during the time when (and at the location where) the reconnection site was observed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 54
Typ av publikation
tidskriftsartikel (49)
konferensbidrag (3)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (51)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Hesse, M (20)
Torbert, R. B. (14)
Ergun, R. E. (14)
Burch, J. L. (13)
Lavraud, B. (13)
Lindqvist, Per-Arne (12)
visa fler...
Strangeway, R. J. (12)
Russell, C. T. (11)
Chen, L. -J (11)
Blennow, K (10)
Nakamura, R. (10)
Giles, B. L. (10)
Wilder, F. D. (10)
Hesse, C (10)
Phan, T. D. (10)
Hesse, S (9)
Wang, S (8)
Varrone, A (8)
Booij, J (8)
Tatsch, K (8)
Le Contel, O. (8)
Davidsson, P (8)
Khotyaintsev, Yuri V ... (7)
Andreasen, N (7)
Goodrich, K. A. (7)
Eastwood, J. P. (7)
Eriksson, S. (6)
Dickson, JC (6)
Tossici-Bolt, L (6)
Sera, T (6)
Ahmadi, N. (6)
Drake, J. F. (6)
Pollock, C. J. (6)
Pagani, M (5)
Sabri, O (5)
Van Laere, K (5)
Graham, Daniel B. (5)
Fuselier, S. A. (5)
Moore, T. E. (5)
Dorelli, J. C. (5)
Minthon, Lennart (4)
Baumjohann, W. (4)
Nobili, F (4)
Asenbaum, S (4)
Darcourt, J (4)
Argall, M. R. (4)
Toledo-Redondo, S. (4)
Vanmechelen, E (4)
Gershman, D. (4)
Malaspina, D. M. (4)
visa färre...
Lärosäte
Karolinska Institutet (23)
Uppsala universitet (19)
Kungliga Tekniska Högskolan (13)
Lunds universitet (8)
Göteborgs universitet (6)
Stockholms universitet (4)
visa fler...
Chalmers tekniska högskola (3)
Linköpings universitet (1)
Linnéuniversitetet (1)
Högskolan Dalarna (1)
visa färre...
Språk
Engelska (54)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (25)
Medicin och hälsovetenskap (10)
Samhällsvetenskap (1)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy