SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hessel L) "

Sökning: WFRF:(Hessel L)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lewis, Christopher T. A., et al. (författare)
  • Remodelling of skeletal muscle myosin metabolic states in hibernating mammals
  • 2023
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20°C). Upon repeating loaded Mant-ATP chase experiments at 8°C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77-107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Lewis, Christopher T. A., et al. (författare)
  • Remodeling of skeletal muscle myosin metabolic states in hibernating mammals
  • 2024
  • Ingår i: eLIFE. - : eLife Sciences Publications Ltd. - 2050-084X. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77-107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.
  •  
6.
  • Mallet, E, et al. (författare)
  • A liquid hexavalent combined vaccine against diphtheria, tetanus, pertussis, poliomyelitis, Haemophilus influenzae type B and hepatitis B: review of immunogenicity and safety
  • 2004
  • Ingår i: Vaccine. - : Elsevier BV. - 1873-2518 .- 0264-410X. ; 22:11-12, s. 1343-1357
  • Forskningsöversikt (refereegranskat)abstract
    • To reduce the number of injections needed to comply with paediatric vaccination requirements, a liquid, hexavalent vaccine (DTaP-IPV-PRP-T-HBs; Hexavac((R)); Aventis Pasteur MSD) has been developed for primary and booster vaccination of infants and toddlers. In extensive clinical studies, Hexavac((R)) has been shown to be highly immunogenic. Seroconversion or seroprotective titres of antibodies against all antigens were achieved in the majority of infants following a primary series of three doses administered at 1-2-month intervals from 2 months of age. Hexavac((R)) also induced immunologic memory, as evidenced by the anamnestic response to booster vaccination at 12-18 months of age. These responses were comparable with those seen following concomitant administration of Pentavac(TM) (DTaP-IPV//PRP-T) and monovalent hepatitis B vaccine (H-B-Vax(TM) II), and were also within the ranges observed for other relevant licensed vaccines. Clinical studies comparing the immunogenicity of Hexavac((R)) administered at either 2, 3 and 4 months or 2, 4 and 6 months demonstrated that it can be used by either vaccination schedule. A further study also supported the use of primary doses of Hexavac((R)) at 3 and 5 months with a booster at 12 months of age. Hexavac((R)) demonstrated a good reactogenicity and tolerability profile. The most frequently reported adverse events after both primary and booster doses were local reactions of redness and swelling/induration and a systemic response of mild fever, irrespective of the vaccine used for priming. Hexavac((R)) provided immunity against six important childhood diseases with a single injection at each visit. (C) 2003 Elsevier Ltd. All rights reserved.
  •  
7.
  • Tal, Tamara, et al. (författare)
  • New approach methods to assess developmental and adult neurotoxicity for regulatory use : a PARC work package 5 project
  • 2024
  • Ingår i: Frontiers in Toxicology. - : Frontiers Media S.A.. - 2673-3080. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • In the European regulatory context, rodent in vivo studies are the predominant source of neurotoxicity information. Although they form a cornerstone of neurotoxicological assessments, they are costly and the topic of ethical debate. While the public expects chemicals and products to be safe for the developing and mature nervous systems, considerable numbers of chemicals in commerce have not, or only to a limited extent, been assessed for their potential to cause neurotoxicity. As such, there is a societal push toward the replacement of animal models with in vitro or alternative methods. New approach methods (NAMs) can contribute to the regulatory knowledge base, increase chemical safety, and modernize chemical hazard and risk assessment. Provided they reach an acceptable level of regulatory relevance and reliability, NAMs may be considered as replacements for specific in vivo studies. The European Partnership for the Assessment of Risks from Chemicals (PARC) addresses challenges to the development and implementation of NAMs in chemical risk assessment. In collaboration with regulatory agencies, Project 5.2.1e (Neurotoxicity) aims to develop and evaluate NAMs for developmental neurotoxicity (DNT) and adult neurotoxicity (ANT) and to understand the applicability domain of specific NAMs for the detection of endocrine disruption and epigenetic perturbation. To speed up assay time and reduce costs, we identify early indicators of later-onset effects. Ultimately, we will assemble second-generation developmental neurotoxicity and first-generation adult neurotoxicity test batteries, both of which aim to provide regulatory hazard and risk assessors and industry stakeholders with robust, speedy, lower-cost, and informative next-generation hazard and risk assessment tools.
  •  
8.
  • Zhou, T. K., et al. (författare)
  • Molecular Characterisation of Titin N2A and Its Binding of CARP Reveals a Titin/Actin Cross-linking Mechanism
  • 2021
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 0022-2836. ; 433:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Striated muscle responds to mechanical overload by rapidly up-regulating the expression of the cardiac ankyrin repeat protein, CARP, which then targets the sarcomere by binding to titin N2A in the I-band region. To date, the role of this interaction in the stress response of muscle remains poorly understood. Here, we characterise the molecular structure of the CARP-receptor site in titin (UN2A) and its binding of CARP. We find that titin UN2A contains a central three-helix bundle fold (ca 45 residues in length) that is joined to N- and C-terminal flanking immunoglobulin domains by long, flexible linkers with partial helical content. CARP binds titin by engaging an a-hairpin in the three-helix fold of UN2A, the C-terminal linker sequence, and the BC loop in Ig81, which jointly form a broad binding interface. Mutagenesis showed that the CARP/N2A association withstands sequence variations in titin N2A and we use this information to evaluate 85 human single nucleotide variants. In addition, actin co-sedimentation, co-transfection in C2C12 cells, proteomics on heart lysates, and the mechanical response of CARP-soaked myofibrils imply that CARP induces the cross-linking of titin and actin myofilaments, thereby increasing myofibril stiffness. We conclude that CARP acts as a regulator of force output in the sarcomere that preserves muscle mechanical performance upon overload stress. Crown Copyright (C) 2021 Published by Elsevier Ltd. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy