SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Heudorfer Benedikt) "

Sökning: WFRF:(Heudorfer Benedikt)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barthel, Roland, 1967, et al. (författare)
  • Similarity-based approaches in hydrogeology: proposal of a new concept for data-scarce groundwater resource characterization and prediction
  • 2021
  • Ingår i: Hydrogeology Journal. - : Springer Science and Business Media LLC. - 1435-0157 .- 1431-2174. ; 29:5, s. 1693-1709
  • Tidskriftsartikel (refereegranskat)abstract
    • A new concept is proposed for describing, analysing and predicting the dynamic behaviour of groundwater resources based on classification and similarity. The concept makes use of the ideas put forward by the “PUB” (predictions in ungauged basins) initiative in surface-water hydrology. One of the approaches developed in PUB uses the principle that similar catchments, exposed to similar weather conditions, will generate a similar discharge response at the catchment outlet. This way, models developed for well-observed catchments can be used to make predictions for ungauged catchments with similar properties (topography, land use, etc.). The concept proposed here applies the same idea to groundwater systems, with the goal to make predictions of the dynamic behaviour of groundwater in poorly observed systems using similarities to well-observed and understood systems. This paper gives an overview of the main ideas, the methodological background, the progress so far, and the challenges that the authors regard as most crucial for further development. One of the main goals of this article is thus to raise interest for this new concept within the groundwater community. There are a multitude of highly interesting aspects to investigate, and a community effort, as with PUB, is required. A second goal is to foster and exchange ideas between the groundwater and surface water research communities who, while often working on similar problems, have often missed the opportunity to learn from each other.
  •  
2.
  • Giese, Markus, 1985, et al. (författare)
  • Comparative hydrogeology – reference analysis of groundwater dynamics from neighbouring observation wells
  • 2020
  • Ingår i: Hydrological Sciences Journal. - : Informa UK Limited. - 0262-6667 .- 2150-3435. ; 65:10, s. 1685-1706
  • Tidskriftsartikel (refereegranskat)abstract
    • Groundwater level fluctuations are caused by spatial and temporal superposition of processes within and outside the aquifer system. Most of the subsurface processes are usually observed on a small scale. Upscaling to the regional scale, as required for future climate change scenarios, is difficult due to data scarcity and increasing complexity. In contrast to the limited availability of system characteristics, high-resolution data records of groundwater hydrographs are more generally available. Exploiting the information contained in these records should thus be a priority for analysis of the chronical lack of data describing groundwater system characteristics. This study analyses the applicability of 63 indices derived from daily hydrographs to quantify different dynamics of groundwater levels in unconfined gravel aquifers from three groundwater regions (Bavaria, Germany). Based on the results of two different skill tests, the study aids index selection for different dynamic components of groundwater hydrographs.
  •  
3.
  • Haaf, Ezra, 1985, et al. (författare)
  • Physiographic and climatic controls on regional groundwater dynamics
  • 2020
  • Ingår i: Water Resources Research. - 0043-1397 .- 1944-7973. ; 56:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The main goal of this study is to explore whether the ideas established by surface water hydrologists in the context of “PUB” (predictions in ungauged basins) can be useful in hydrogeology. The concrete question is whether it is possible to create predictive models for groundwater systems with no or few observations based on knowledge derived from similar groundwater systems which are well‐observed. To do so, this study analyses the relationship between temporal dynamics of groundwater levels and climatic and physiographic characteristics. The analysis is based on data from 341 wells in Southern Germany with ten‐year daily groundwater hydrographs. Observation wells are used in confined and unconfined sand and gravel aquifers from narrow mountainous valleys as well as more extensive lowland alluvial aquifers. Groundwater dynamics at each location are summarized with 46 indices describing features of groundwater hydrographs. Besides borehole log‐derived geologic information, local and regional morphologic characteristics as well as topography‐derived boundary and climatic descriptors were derived for each well. Regression relationships were established by mining the data for associations between dynamics and descriptors with forward stepwise regression at a confidence level >95%. The most important predictors are geology and boundary conditions and secondarily, climate, as well as some topographic features, such as regional convergence. The multiple regression models are in general agreement with process understanding linked to groundwater dynamics in unconfined aquifers. This systematic investigation suggests that statistical regionalization of groundwater dynamics in ungauged aquifers based on map‐derived physiographic and climatic controls may be feasible.
  •  
4.
  • Nolte, Annika, et al. (författare)
  • Disentangling coastal groundwater level dynamics in a global dataset
  • 2024
  • Ingår i: Hydrology and Earth System Sciences. - 1027-5606. ; 28, s. 1215-1249
  • Tidskriftsartikel (refereegranskat)abstract
    • Groundwater level (GWL) dynamics result from a complex interplay between groundwater systems and the Earth system. This study aims to identify common hydrogeological patterns and to gain a deeper understanding of the underlying similarities and their link to physiographic, climatic, and anthropogenic controls of groundwater in coastal regions. The most striking aspects of GWL dynamics and their controls were identified through a combination of statistical metrics, calculated from about 8000 groundwater hydrographs, pattern recognition using clustering algorithms, classification using random forest, and SHapley Additive exPlanations (SHAPs). Hydrogeological similarity was defined by four clusters representing distinct patterns of GWL dynamics. These clusters can be observed globally across different continents and climate zones but simultaneously vary regionally and locally, suggesting a complicated interplay of controlling factors. The main controls differentiating GWL dynamics were identified, but we also provide evidence for the currently limited ability to explain GWL dynamics on large spatial scales, which we attribute mainly to uncertainties in the explanatory data. Finally, this study provides guidance for systematic and holistic groundwater monitoring and modeling and motivates a consideration of the different aspects of GWL dynamics, for example, when predicting climate-induced GWL changes, and the use of explainable machine learning techniques to deal with GWL complexity – especially when information on potential controls is limited or needs to be verified.
  •  
5.
  • Nolte, Annika, et al. (författare)
  • Disentangling coastal groundwater level dynamics on a global data set
  • 2023
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • This study aims to identify common hydrogeological patterns and to gain a deeper understanding of the underlying similarities and their link to physiographic, climatic, and anthropogenic controls of coastal groundwater. The most striking aspects of GWL dynamics and their controls were identified through a combination of statistical metrics, calculated from about 8,000 groundwater hydrographs, and pattern recognition, classification, and explanation using machine learning techniques and SHapley Additive exPlanations (SHAP). Overall, four different GWL dynamics patterns emerge, independent of the different seasons, time series lengths, and periods. We show in this study that similar GWL dynamics can be observed around the world with different combinations of site characteristics, but also that the main factors differentiating these patterns can be identified. Three of the identified patterns exhibit high short-term and interannual variability and are most common in regions with low terrain elevation and shallow groundwater depth. Climate and soil characteristics are most important in differentiating these patterns. This study provides new insights into the hydrogeological behavior of groundwater in coastal regions and guides systematic and holistic groundwater monitoring and modelling, motivating to consider various aspects of GWL dynamics when, for example, estimating climate-driven GWL changes – especially when information on potential controls is limited.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy