SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hewitt Judi E.) "

Sökning: WFRF:(Hewitt Judi E.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cummings, Vonda J., et al. (författare)
  • Linking Ross Sea Coastal Benthic Communities to Environmental Conditions : Documenting Baselines in a Spatially Variable and Changing World
  • 2018
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the functionality of marine benthic ecosystems, and how they are influenced by their physical environment, is fundamental to realistically predicting effects of future environmental change. The Antarctic faces multiple environmental pressures associated with greenhouse gas emissions, emphasizing the need for baseline information on biodiversity and the bio-physical processes that influence biodiversity. We describe a survey of shallow water benthic communities at eight Ross Sea locations with a range of environmental characteristics. Our analyses link coastal benthic community composition to seafloor habitat and sedimentary parameters and broader scale features, at locations encompassing considerable spatial extent and variation in environmental characteristics (e.g., seafloor habitat, sea ice conditions, hydrodynamic regime, light). Our aims were to: (i) document existing benthic communities, habitats and environmental conditions against which to assess future change, (ii) investigate the relationships between environmental and habitat characteristics and benthic community structure and function, and (iii) determine whether these relationships were dependent on spatial extent. A very high percentage (>95%) of the between-location variability in macro- or epifaunal community composition was explainable using multi-scale environmental variables. The explanatory power varied depending on the scale of influence of the environmental variables measured (fine and medium-scale habitat, broad scale), and with community type. However, the inclusion of parameters at all scales produced the most powerful model for both communities. Ice duration, ice thickness and snow cover were important broad scale variables identified that directly relate to climate change. Even when using only habitat-scale variables, extending the spatial scale of the study from three locations covering 32 km to eight locations covering ~340 km increased the degree of explanatory power from 18–32 to 64–78%. The increase in explanatory power with spatial extent lends weight to the possibility of using an indirect “space for time” substitution approach for future predictions of the effects of change on these coastal marine ecosystems. Given the multiple and interacting drivers of change in Antarctic coastal ecosystems a multidisciplinary, long term, repeated observation approach will be vital to both improve and test predictions of how coastal communities will respond to environmental change.
  •  
2.
  • Gladstone-Gallagher, Rebecca V., et al. (författare)
  • Identifying “vital attributes” for assessing disturbance–recovery potential of seafloor communities
  • 2021
  • Ingår i: Ecology and Evolution. - : Wiley. - 2045-7758. ; 11:11, s. 6091-6103
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite a long history of disturbance-recovery research, we still lack a generalizable understanding of the attributes that drive community recovery potential in seafloor ecosystems. Marine soft-sediment ecosystems encompass a range of heterogeneity from simple low-diversity habitats with limited biogenic structure, to species-rich systems with complex biogenic habitat structure. These differences in biological heterogeneity are a product of natural conditions and disturbance regimes. To search for unifying attributes, we explore whether a set of simple traits can characterize community disturbance-recovery potential using seafloor patch-disturbance experiments conducted in two different soft-sediment landscapes. The two landscapes represent two ends of a spectrum of landscape biotic heterogeneity in order to consider multi-scale disturbance-recovery processes. We consider traits at different levels of biological organization, from the biological traits of individual species, to the traits of species at the landscape scale associated with their occurrence across the landscape and their ability to be dominant. We show that in a biotically heterogeneous landscape (Kawau Bay, New Zealand), seafloor community recovery is stochastic, there is high species turnover, and the landscape-scale traits are good predictors of recovery. In contrast, in a biotically homogeneous landscape (Baltic Sea), the options for recovery are constrained, the recovery pathway is thus more deterministic and the scale of recovery traits important for determining recovery switches to the individual species biological traits within the disturbed patch. Our results imply that these simple, yet sophisticated, traits can be effectively used to characterize community recovery potential and highlight the role of landscapes in providing resilience to patch-scale disturbances.
  •  
3.
  • Gladstone-Gallagher, Rebecca V., et al. (författare)
  • Social-ecological connections across land, water, and sea demand a reprioritization of environmental management
  • 2022
  • Ingår i: Elementa. - : University of California Press. - 2325-1026. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite many sectors of society striving for sustainability in environmental management, humans often fail to identify and act on the connections and processes responsible for social–ecological tipping points. Part of the problem is the fracturing of environmental management and social–ecological research into ecosystem domains (land, freshwater, and sea), each with different scales and resolution of data acquisition and distinct management approaches. We present a perspective on the social–ecological connections across ecosystem domains that emphasize the need for management reprioritization to effectively connect these domains. We identify critical nexus points related to the drivers of tipping points, scales of governance, and the spatial and temporal dimensions of social–ecological processes. We combine real-world examples and a simple dynamic model to illustrate the implications of slow management responses to environmental impacts that traverse ecosystem domains. We end with guidance on management and research opportunities that arise from this cross-domain lens to foster greater opportunity to achieve environmental and sustainability goals.
  •  
4.
  • Lohrer, Andrew M., et al. (författare)
  • Influence of New Zealand cockles (Austrovenus stutchburyi) on primary productivity in sandflat-seagrass (Zostera muelleri) ecotones
  • 2016
  • Ingår i: Estuarine, Coastal and Shelf Science. - : Elsevier BV. - 0272-7714 .- 1096-0015. ; 181, s. 238-248
  • Tidskriftsartikel (refereegranskat)abstract
    • New Zealand cockles (Austrovenus stutchburyi) are ecologically important, intertidal bivalves that have been shown to influence nutrient cycles and the productivity of microphytobenthos on sandflats. Here, we investigated the potential for cockles to impact the productivity of seagrass, Zostera muelleri, and examined interactions between these habitat-defining species where they co-occur. We sampled bivalve densities and sizes, sediment properties, and seagrass shoot densities across the boundaries of two seagrass patches on an intertidal sandflat in northern New Zealand, and measured dissolved oxygen and nutrient fluxes in light and dark benthic incubation chambers in conjunction with a 0-97% gradient in seagrass cover. Although gross primary production (GPP, mu mol O-2 m(-2) h(-1)) increased predictably with the cover of live seagrass, the density of cockles and sediment properties also contributed directly and indirectly. Seagrass cover was positively correlated with cockle density (ranging from 225 to 1350 individuals per m(2)), sediment mud percentage (0.5-9.5%), and organic matter content (0.5-2.2%), all of which can affect the efflux of ammonium (readily utilisable inorganic nitrogen) from sediments. Moreover, the cover of green seagrass blades plateaued (never exceeded 70%) in the areas of highest total seagrass cover, adding complexity to cockle-seagrass interactions and contributing to a unimodal cockleGPP relationship.
  •  
5.
  • Rodil, Iván F., et al. (författare)
  • Macrofauna communities across a seascape of seagrass meadows : environmental drivers, biodiversity patterns and conservation implications
  • 2021
  • Ingår i: Biodiversity and Conservation. - : Springer Science and Business Media LLC. - 0960-3115 .- 1572-9710. ; :30, s. 3023-3043
  • Tidskriftsartikel (refereegranskat)abstract
    • Similar to other coastal biogenic habitats (e.g. tidal marshes, kelp forests, mangroves and coral reefs), a key function of seagrass meadows is the enhancement of biodiversity. Variability at multiple spatial scales is a driver of biodiversity, but our understanding of the response of macrofauna communities to variability of seagrass meadows is limited. We examined the macrofauna community structure (abundance and biomass) and diversity patterns (α- and β-diversity) across a seascape gradient of eleven seagrass meadows differing in the number, composition and density of plant species. The variability of the macrobenthic communities was regulated by a combination of sedimentary (mainly for the infauna) and macrophyte (mainly for the epifauna) predictors. We demonstrate that the natural occurrence of drifting algae trapped in the aboveground complexity of the meadows benefits seagrass macrofauna. Seagrass-associated macrofauna showed a clear increase in abundance and α-diversity metrics with increasing habitat complexity attributes (i.e. shoot density, plant biomass and canopy height). Furthermore, partitioning of β-diversity (i.e. the variation of species composition between sites) implied the replacement of some species by others between sites (i.e. spatial turnover) instead of a process of species loss (or gain) from site to site (i.e. nestedness). Therefore, the enhancement of macrofauna diversity across an increasing gradient of seagrass complexity, and the dominance of the turnover component suggest that devoting conservation efforts on many different types of meadows, including the less diverse, should be a priority for coastal habitat-management.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy