SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hewson Chris M.) "

Search: WFRF:(Hewson Chris M.)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bonaldi, Carlotta, et al. (author)
  • Recurrence, fidelity and proximity to previously visited sites throughout the annual cycle in a trans-Saharan migrant, the common cuckoo
  • In: Journal of Avian Biology. - 0908-8857.
  • Journal article (peer-reviewed)abstract
    • Most migratory birds return every year to the same breeding sites and some species show a similarly high fidelity to wintering grounds as well. Fidelity to stopover sites during migration has been much less studied and is usually found to be lower. Here, we investigate site fidelity and distance to previously visited sites throughout the annual cycle in the common cuckoo, a nocturnal trans-Saharan migrant, based on satellite-tracking data from repeated annual migrations of thirteen adult males. All birds (100%) returned to the same breeding grounds, with a median shortest distance of only 1 km from the locations in previous year. This was in strong contrast to a much lower and much less precise site fidelity at non-breeding sites during the annual cycle: In only 18% of the possible cases in all non-breeding regions combined, did the cuckoos return to within 50 km of a previously visited non-breeding site, with no significant differences among the main staging regions (Europe in autumn, Sahel in autumn, wintering in Central Africa, West Africa in spring, Europe in spring). The shortest distance to a previously visited non-breeding site differed among the staging regions with median shortest distances for the longest stopovers of 131 km [2;1223] (median [min;max]) in Europe, 207 km [1;2222] in Sahel in autumn and 110 km [0;628] in Central Africa. The distance to a previously visited staging site decreased with the time spent at the stopover in a previous year. Understanding the drivers of recurrence and site selection in migratory birds are important for guiding conservation efforts in this group but further studies are needed to establish whether the patterns observed in cuckoos are general among terrestrial migrants with continuous distribution of habitat.
  •  
2.
  • Lisovski, Simeon, et al. (author)
  • Geolocation by light: accuracy and precision affected by environmental factors
  • 2012
  • In: Methods in Ecology and Evolution. - 2041-210X. ; 3:3, s. 603-612
  • Journal article (peer-reviewed)abstract
    • 1. Geolocation by light allows for tracking animal movements, based on measurements of light intensity over time by a data-logging device (geolocator). Recent developments of ultra-light devices (<2 g) broadened the range of target species and boosted the number of studies using geolocators. However, an inherent problem of geolocators is that any factor or process that changes the natural light intensity pattern also affects the positions calculated from these light patterns. Although the most important factors have been identified, estimation of their effect on the accuracy and precision of positions estimated has been lacking but is very important for the analyses and interpretation of geolocator data. 2. The threshold method is mainly used to derive positions by defining sunrise and sunset times from the light intensity pattern for each recorded day. This method requires calibration: a predefined sun elevation angle for estimating latitude by fitting the recorded day/night lengths to theoretical values across latitudes. Therewith, almost constant shading can be corrected for by finding the appropriate sun elevation angle. 3. Weather, topography and vegetation are the most important factors that influence light intensities. We demonstrated their effect on the measurement of day/night length, time of solar midnight/noon and the resulting position estimates using light measurements from stationary geolocators at known places and from geolocators mounted on birds. Furthermore, we investigated the influence of different calibration methods on the accuracy of the latitudinal positions. 4. All three environmental factors can influence the light intensity pattern significantly. Weather and an animals behaviour result in increased noise in positioning, whereas topography and vegetation result in systematic shading and biased positions. Calibration can significantly shift the estimated latitudes and potentially increase the accuracy, but detailed knowledge about the particular confounding factors and the behaviour of the studied animal is crucial for the choice of the most appropriate calibration method.
  •  
3.
  • Zhao, Yanyan, et al. (author)
  • A 30,000-km journey by Apus apus pekinensis tracks arid lands between northern China and south-western Africa
  • 2022
  • In: Movement Ecology. - : Springer Science and Business Media LLC. - 2051-3933. ; 10
  • Journal article (peer-reviewed)abstract
    • Background: As a widely distributed and aerial migratory bird, the Common Swift (Apus apus) flies over a wide geographic range in Eurasia and Africa during migration. Although some studies have revealed the migration routes and phenology of European populations, A. a. apus (from hereon the nominate apus), the route used by its East Asian counterpart A. a. pekinensis (from hereon pekinensis) remained a mystery. Methods: Using light level geolocators, we studied the migration of adult pekinensis breeding in Beijing from 2014 to 2018, and analysed full annual tracks obtained from 25 individuals. In addition, we used the mean monthly precipitation to assess the seasonal variations in humidity for the distribution ranges of the nominate apus and pekinensis. This environmental variable is considered to be critically relevant to their migratory phenology and food resource abundance. Results: Our results show that the swifts perform a round-trip journey of ca 30,000 km each year, representing a detour of 26% in autumn and 15% in spring compared to the shortest route between the breeding site in Beijing and wintering areas in semi-arid south-western Africa. Compared to the nominate apus, pekinensis experiences drier conditions for longer periods of time. Remarkably, individuals from our study population tracked arid habitat along the entire migration corridor leading from a breeding site in Beijing to at least central Africa. In Africa, they explored more arid habitats during non-breeding than the nominate apus. Conclusions: The migration route followed by pekinensis breeding in Beijing might suggest an adaptation to semi-arid habitat and dry climatic zones during non-breeding periods, and provides a piece of correlative evidence indicating the historical range expansion of the subspecies. This study highlights that the Common Swift may prove invaluable as a model species for studies of migration route formation and population divergence.
  •  
4.
  • Åkesson, Susanne, et al. (author)
  • Evolution of chain migration in an aerial insectivorous bird, the common swift Apus apus
  • 2020
  • In: Evolution. - : Wiley. - 0014-3820 .- 1558-5646. ; 74:10, s. 2377-2391
  • Journal article (peer-reviewed)abstract
    • Spectacular long-distance migration has evolved repeatedly in animals enabling exploration of resources separated in time and space. In birds, these patterns are largely driven by seasonality, cost of migration, and asymmetries in competition leading most often to leapfrog migration, where northern breeding populations winter furthest to the south. Here, we show that the highly aerial common swift Apus apus, spending the nonbreeding period on the wing, instead exhibits a rarely found chain migration pattern, where the most southern breeding populations in Europe migrate to wintering areas furthest to the south in Africa, whereas the northern populations winter to the north. The swifts concentrated in three major areas in sub-Saharan Africa during the nonbreeding period, with substantial overlap of nearby breeding populations. We found that the southern breeding swifts were larger, raised more young, and arrived to the wintering areas with higher seasonal variation in greenness (Normalized Difference Vegetation Index) earlier than the northern breeding swifts. This unusual chain migration pattern in common swifts is largely driven by differential annual timing and we suggest it evolves by prior occupancy and dominance by size in the breeding quarters and by prior occupancy combined with diffuse competition in the winter.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view