SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hickel Tilmann) "

Sökning: WFRF:(Hickel Tilmann)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bigdeli, Sedigheh, et al. (författare)
  • An insight into using DFT data for Calphad modelling of solid phases in the third generation of Calphad databases, case study for Al
  • 2017
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    •  In developing the next generation of Calphad databases, new models are used in which each term contributing to the Gibbs energy has a physical meaning. Harmonic vibrations of atoms are modelled using the Einstein temperature; anharmonic vibrations, electronic and magnetic contributions to the solid phases are represented by specific terms. The two-state model is used for the liquid phase. To continue the development, a new description for unary aluminum is presented in this work. In particular, finite temperature density-functional-theory (DFT) results are used to discuss and suggest the most applicable and physically based model for Calphad assessments of solid phases above the melting point. 
  •  
2.
  • Dutta, Biswanath, et al. (författare)
  • Phonons in magnetically disordered materials : Magnetic versus phononic time scales
  • 2020
  • Ingår i: Physical Review B. - : AMER PHYSICAL SOC. - 2469-9950 .- 2469-9969. ; 101:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The lattice dynamics in magnetic materials, such as Fe depends on the degree of disorder of the atomic magnetic moments and the time scale of spin fluctuations. Using first-principles methods, we have studied this effect by determining the force constant matrix in two limits: (i) When spin fluctuations are much faster than the atom vibrations, their combined impact is captured by a spin-space averaged force constant matrix, (ii) when individual spin fluctuations are sufficiently slow to scatter the phonon modes, the itinerant coherent potential approximation with spin-pair resolved force constants (i.e., Phi(up arrow up arrow), Phi(down arrow down arrow), and Phi(up arrow down arrow)) is employed in this paper. The physical consequences for the vibrational spectral functions are analyzed by systematically modifying the input parameters (magnetization and ratio of force constants betweens atoms with equal and opposite spin directions) and by deriving them for the prototype material system bcc Fe from first-principles calculations. In the paramagnetic regime, the two limits yield identical phonon spectra. Below the Curie temperature, however, there are regions in the parametric study that show qualitative differences, including a broadening of the phonon peaks. For bcc Fe, however, the quantitative modifications of phonon frequencies turn out to be small.
  •  
3.
  • Ehteshami, Hossein (författare)
  • Finite temperature properties of elements and alloy phases from first principles
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • First principles calculations are usually concerned with properties calculated at temperature 0 K. However, the industrially important materials are functioning at finite temperatures. To fill such a gap a first-principles based modeling of free energy has been developed in this thesis and finite temperature properties of different phases of Fe and Mn have been calculated and contrasted with available experimental data.In particular, using partitioning of the Helmholtz free energy, thermophysical properties of paramagnetic Fe have been reported. The heat capacity, lattice constant, thermal expansion and elastic moduli of γ- and δ-Fe show a good agreement with available experimental data. In the case of α-Fe, we observe a good agreement for elastic moduli and thermal expansion with experiments but the heat capacity is not well-reproduced in the calculations because of the large contribution of magnetic short-range which our models are not capable of capturing.α- and β-Mn theoretically pose a challenge for direct simulations of thermodynamic properties because of the complexity of magnetic and crystal structure. The partitioning of free energy has been used and thermodynamics of these phases have been derived. The obtained results show a good agreement with experimental data suggesting that, despite the complexities of these phases, a rather simple approach can well describe their finite temperature properties. High temperature phases of Mn, γ and δ, are also theoretically challenging problems. Employing a similar approach to Fe, thermophysical properties of these high symmetry phases of Mn have been reported which also show good agreement with available experimental data.The point defect and metal-self diffusion in titanium carbide (TiC), a refractory material, have been investigated in the present work. The common picture of metal-vacancy exchange mechanism for metal self-diffusion was shown to be unable to explain the experimentally observed values of activation energy. Several new clusters of point defects such as vacancies and interstitials have been found and reported which are energetically lower that a single metal vacancy. In a subsequent study, we showed that some of these clusters can be considered as mediators of metal self-diffusion in TiC.Evaluation of structural properties of Ti(O,C), a solid solution of TiC and β-TiO, from supercell approach is an extremely difficult task. For a dilute concentration of O, we show the complexity of describing an impurity of O in TiC using supercell approach. A single-site method such as the exact muffin-tin orbital method in the coherent potential approximation (EMTO-CPA) is a good alternative to supercell modeling of Ti(O,C). However, a study of Ti(O,C) using EMTO-CPA requires a further development of the technique regarding the partitioning of space. The shape module of EMTO has been modified for this purpose. With the help of the modified module, Ti(O,C) have been studied using EMTO-CPA. The results for the divacancy concentration and corresponding lattice parameter variations show good agreement with experimental data.
  •  
4.
  • Körmann, Fritz, et al. (författare)
  • Lambda transitions in materials science : Recent advances in CALPHAD and first-principles modelling
  • 2014
  • Ingår i: Physica status solidi. B, Basic research. - : Wiley. - 0370-1972 .- 1521-3951. ; 251:1, s. 53-80
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper provides a comprehensive overview of state-of-the-art computational techniques to thermodynamically model magnetic and chemical order-disorder transitions. Recent advances as well as limitations of various approaches to these so-called lambda transitions are examined in detail, focussing on calphad models and first-principles methods based on density functional theory (DFT). On the one hand empirical implementations -based on the Inden-Hillert-Jarl formalism -are investigated, including a detailed interpretation of the relevant parameters, physical limiting cases and potential extensions. In addition, Bragg-Williams-based approaches as well as cluster-variation methods of chemical order-disorder transitions are discussed. On the other hand, it is shown how magnetic contributions can be introduced based on various microscopic model Hamiltonians (Hubbard model, Heisenberg model and beyond) in combination with DFT-computed parameters. As a result of the investigation we were able to indicate similarities between the treatment of chemical and magnetic degrees of freedom as well as the treatment within the calphad and DFT approaches. Potential synergy effects resulting from this overlap have been derived and alternative approaches have been suggested, in order to improve future thermodynamic modelling of lambda transitions.
  •  
5.
  • Stockem, Irina, et al. (författare)
  • Anomalous Phonon Lifetime Shortening in Paramagnetic CrN Caused by Spin-Lattice Coupling: A Combined Spin and Ab Initio Molecular Dynamics Study
  • 2018
  • Ingår i: Physical Review Letters. - : AMER PHYSICAL SOC. - 0031-9007 .- 1079-7114. ; 121:12
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the mutual coupling of spin fluctuations and lattice vibrations in paramagnetic CrN by combining atomistic spin dynamics and ab initio molecular dynamics. The two degrees of freedom are dynamically coupled, leading to nonadiabatic effects. Those effects suppress the phonon lifetimes at low temperature compared to an adiabatic approach. The dynamic coupling identified here provides an explanation for the experimentally observed unexpected temperature dependence of the thermal conductivity of magnetic semiconductors above the magnetic ordering temperature.
  •  
6.
  • Thore, Andreas (författare)
  • Phase stability and physical properties of nanolaminated materials from first principles
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The MAX phase family is a set of nanolaminated, hexagonal materials typically comprised of three elements: a transition metal (M), an A-group element (A), and carbon and/or nitrogen (X). In this thesis, first-principles based methods have been used to investigate the phase stability and physical properties of a number of MAX and MAX-like phases.Most theoretical work on MAX phase stability use the constraint of 0 K conditions, due to the very high computational cost of including temperature dependent effects such as lattice vibrations and electronic excitations for all relevant competing phases in the ternary or multinary chemical space. Despite this, previous predictions of the existence of new MAX phases have to a large extent been experimentally verified. In an attempt to provide a possible explanation for this consistency, and thus help strengthen the confidence in future predictions, we have calculated the temperature dependent phase stability of Tin+1AlCn, to date the most studied MAX phases. We show that both the electronic and vibrational contribution to the Gibbs free energies of the MAX phases are  cancelled by the corresponding contributions to the Gibbs free energies of the competing phases. We further show that this is the case even when thermal expansion is considered.We have also investigated the stability of two hypothetical MAX-like phases, V2Ga2C and (Mo1-xVx)2Ga2C, motivated by a search for ways to attain new two-dimensional MAX phase derivatives, so-called MXenes. We predict that it is possible to synthesize both phases. For x≤0.25, stability of (Mo1-xVx)2Ga2C is indicated for both ordered and disordered solid solutions on the M sublattice. For x=0.5 and x≥0.75, stability is only indicated for disordered solutions. The ordered solutions are stable at temperatures below 1000 K, whereas stabilization of the disordered solutions requires temperatures of up to 2100 K, depending on the V concentration.Finally, we have investigated the electronic, vibrational, and magnetic properties of the recently synthesized MAX phase Mn2GaC. We show that the electronic band structure is anisotropic, and determine the bulk, shear, and Young’s modulus to be 157, 93, and 233 GPa, respectively, and Poisson’s ratio to be 0.25. We further predict the magnetic critical order-disorder temperature of Mn2GaC to be 660 K. We base the predictions on Monte Carlo simulations of a bilinear Heisenberg Hamiltonian constructed from magnetic exchange interaction parameters derived using two different supercell methods: the novel magnetic direct cluster averaging method (MDCA), and the Connolly-Williams method (CW). We conclude that CW is less computationally expensive than MDCA for chemically and topologically ordered phases such as Mn2GaC.
  •  
7.
  • Zhang, Xi, et al. (författare)
  • Temperature dependence of the stacking-fault Gibbs energy for Al, Cu, and Ni
  • 2018
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - : American Physical Society (APS). - 1098-0121 .- 1550-235X. ; 98:22
  • Tidskriftsartikel (refereegranskat)abstract
    • The temperature-dependent intrinsic stacking fault Gibbs energy is computed based on highly converged density-functional-theory (DFT) calculations for the three prototype face-centered cubic metals Al, Cu, and Ni. All relevant temperature-dependent contributions are considered including electronic, vibrational, magnetic, and explicit anharmonic Gibbs energy contributions as well as coupling terms employing state-of-the-art statistical sampling techniques. Particular emphasis is put on a careful comparison of different theoretical concepts to derive the stacking fault energy such as the axial-next-nearest-neighbor-Ising (ANNNI) model or the vacuum-slab approach. Our theoretical results are compared with an extensive set of previous theoretical and experimental data. Large uncertainties in the experimental data highlight the necessity of complementary parameter-free calculations. Specifically, the temperature dependence is experimentally unknown and poorly described by thermodynamic databases. Whereas CALPHAD derived data shows an increase of the stacking fault energy with temperature for two of the systems (Cu and Ni), our results predict a decrease for all studied systems. For Ni, the temperature induced change is in fact so strong that in the temperature interval relevant for super-alloy applications the stacking fault energy falls below one third of the low temperature value. Such large changes clearly call for a revision of the stacking fault energy when modeling or designing alloys based on such elements.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy