SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hillberg Louise) "

Sökning: WFRF:(Hillberg Louise)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Grenklo, Staffan, et al. (författare)
  • Tropomyosin assembly intermediates in the control of MF-system turnover
  • 2008
  • Ingår i: European Journal of Cell Biology. - : Elsevier BV. - 0171-9335 .- 1618-1298. ; 87:11, s. 905-920
  • Tidskriftsartikel (refereegranskat)abstract
    • Tropomyosin is a coiled-coil α-helical protein, which self-associates in a head-to-tail fashion along polymers of actin to produce thin filaments. Mammalian non-muscle cells express a large number of tropomyosin isoforms, which are differentially regulated during embryogenesis and associated with specialized actin microfilament ensembles in cells. The function of tropomyosin in specifying form and localization of these subcellular structures, and the precise mechanism(s) by which they carry out their functions, is unclear. This paper reports that, while the major fraction of non-muscle cell tropomyosin resides in actin thin filaments of the cytomatrix, the soluble part of the cytoplasm contains tropomyosins in the form of actin-free multimers, which are isoform specific and of high molecular weight (MWapp 180,000–250,000). Stimulation of motile cells with growth factors induces a rapid, actin polymerization-dependent outgrowth of lamellipodia and filopodia. Concomitantly, the levels of tropomyosin isoform-specific multimers decrease, suggesting their involvement in actin thin filament formation. Malignant tumor cells have drastically altered levels and composition of tropomyosin isoform-specific multimers as well as tropomyosin in the cytomatrix.
  •  
2.
  • Hillberg, Louise, 1977- (författare)
  • Elements in regulation of the microfilament system
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis deals with cell motility. The process of rapid actin polymerization in the lamellipodium of a migrating cell is responsible for its protrusion. Studies have been made on some of the elements behind this event and special interest has been focused on the protein tropomyosin. Muscle tropomyosin and its function in regulating muscle contraction, have been studied for decades, but there are also multiple tropomyosin isoforms in non-muscle cells, whose detailed function has not been revealed. Previous work at this department has shown an involvement of tropomyosin in the assembly of actin in vitro in the presence of gelsolin, and initial studies located tropomyosin to the lamellipodium of stimulated human fibroblasts. However, the general view is that tropomyosin is depleted from the advancing cell edge, observations noted in support of the current model of Arp2/3 dependent formation of actin filaments in lamellipodia. We have demonstrated the presence of tropomyosins in lamellae of migrating cells using different antibodies against non-muscle tropomyosin in indirect immunofluorescence. Also, the distribution of tagged non-muscle tropomyosin isoforms was analyzed in transfected cells. We conclude that tropomyosin is present in lamellipodia, all the way to their advancing edges. The presence of tropomyosin in the leading edge urges for tropomyosin to be taken into account when modelling cell motility. Furthermore, the nature of cytosolic tropomyosin was investigated by gel filtration chromatography and the conclusion was that in fibroblasts, approximately 10% of the tropomyosin is present in the cytosol, while the remaining 90% is associated with actin microfilaments in the cytomatrix. Interestingly, the soluble tropomyosin was found to exist mostly in a multimeric form of high molecular weight. Surprisingly, skeletal muscle tropomyosin and recombinant TM1 expressed in Escherichia coli forms multimers, a phenomenon not observed previously.
  •  
3.
  • Hillberg, Louise, et al. (författare)
  • Tropomyosins are present in lamellipodia of motile cells
  • 2006
  • Ingår i: European Journal of Cell Biology. - : Elsevier BV. - 0171-9335 .- 1618-1298. ; 85:5, s. 399-409
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper shows that high-molecular-weight tropomyosins (TMs), as well as shorter isoforms of this protein, are present in significant amounts in lamellipodia and filopodia of spreading normal and transformed cells. The presence of TM in these locales was ascertained by staining of cells with antibodies reacting with endogenous TMs and through the expression of hemaglutinin- and green fluorescent protein-tagged TM isoforms. The observations are contrary to recent reports suggesting the absence of TMs in regions,where polymerization of actin takes place, and indicate that the view of the role of TM in the formation of actin filaments needs to be significantly revised.
  •  
4.
  • Lassing, Ingrid, et al. (författare)
  • Tropomyosin is a tetramer under physiological salt conditions.
  • 2010
  • Ingår i: Cytoskeleton (Hoboken, N.J.). - : Wiley. - 1949-3592 .- 1949-3584. ; 67:9, s. 599-607
  • Tidskriftsartikel (refereegranskat)abstract
    • Tropomyosin (TM) is a coiled-coil dimer of alpha-helical peptides, which self associates in a head- to-tail fashion along actin polymers, conferring stability to the microfilaments and serving a regulatory function in acto-myosin driven force generation. While the major amount of TM is associated with filaments also in non-muscle cells, it was recently reported that there are isoform-specific pools of TM multimers (not associated with F-actin), which appear to be utilized during actin polymerization and reformed during depolymerization. To determine the size of these multimers, skeletal muscle TM was studied under different salt conditions using gel-filtration and sucrose gradient sedimentation, and compared with purified non-muscle TM 1 and 5, as well as with TM present in non-muscle cell extracts and skeletal muscle TM added to such extracts. Under physiological salt conditions TM appears as a single homogenous peak with the Stokes radius 8.2 nm and the molecular weight (mw) 130,000. The corresponding values for TM 5 are 7.7 nm and 104,000, respectively. This equals four peptides, implying that native TM is a tetramer in physiological salt. It is therefore concluded that the TM multimers are tetramers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy