SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hillebrandt Wolfgang) "

Sökning: WFRF:(Hillebrandt Wolfgang)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Diehl, Roland, et al. (författare)
  • Early Ni-56 decay gamma rays from SN2014J suggest an unusual explosion
  • 2014
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 345:6201, s. 1162-1165
  • Tidskriftsartikel (refereegranskat)abstract
    • Type Ia supernovae result from binary systems that include a carbon-oxygen white dwarf, and these thermonuclear explosions typically produce 0.5 solar mass of radioactive Ni-56. The Ni-56 is commonly believed to be buried deeply in the expanding supernova cloud. In SN2014J, we detected the lines at 158 and 812 kiloelectron volts from Ni-56 decay (time similar to 8.8 days) earlier than the expected several-week time scale, only similar to 20 days after the explosion and with flux levels corresponding to roughly 10% of the total expected amount of Ni-56. Some mechanism must break the spherical symmetry of the supernova and at the same time create a major amount of Ni-56 at the outskirts. A plausible explanation is that a belt of helium from the companion star is accreted by the white dwarf, where this material explodes and then triggers the supernova event.
  •  
2.
  • Fink, Michael, et al. (författare)
  • Three-dimensional pure deflagration models with nucleosynthesis and synthetic observables for Type Ia supernovae
  • 2014
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 438:2, s. 1762-1783
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate whether pure deflagration models of Chandrasekhar-mass carbon-oxygen white dwarf stars can account for one or more subclass of the observed population of Type Ia supernova (SN Ia) explosions. We compute a set of 3D full-star hydrodynamic explosion models, in which the deflagration strength is parametrized using the multispot ignition approach. For each model, we calculate detailed nucleosynthesis yields in a post-processing step with a 384 nuclide nuclear network. We also compute synthetic observables with our 3D Monte Carlo radiative transfer code for comparison with observations. For weak and intermediate deflagration strengths (energy release E-nuc less than or similar to 1.1 x 10(51) erg), we find that the explosion leaves behind a bound remnant enriched with 3 to 10 per cent (by mass) of deflagration ashes. However, we do not obtain the large kick velocities recently reported in the literature. We find that weak deflagrations with E-nuc similar to 0.5 x 10(51) erg fit well both the light curves and spectra of 2002cx-like SNe Ia, and models with even lower explosion energies could explain some of the fainter members of this subclass. By comparing our synthetic observables with the properties of SNe Ia, we can exclude the brightest, most vigorously ignited models as candidates for any observed class of SN Ia: their B - V colours deviate significantly from both normal and 2002cx-like SNe Ia and they are too bright to be candidates for other subclasses.
  •  
3.
  • Foley, Ryan J., et al. (författare)
  • THE FIRST MAXIMUM-LIGHT ULTRAVIOLET THROUGH NEAR-INFRARED SPECTRUM OF A TYPE Ia SUPERNOVA
  • 2012
  • Ingår i: THE ASTROPHYSICAL JOURNAL LETTERS. - 2041-8205. ; 753:1, s. L5-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first maximum-light ultraviolet (UV) through near-infrared (NIR) Type Ia supernova (SN Ia) spectrum. This spectrum of SN 2011iv was obtained nearly simultaneously by the Hubble Space Telescope at UV/optical wavelengths and the Magellan Baade telescope at NIR wavelengths. These data provide the opportunity to examine the entire maximum-light SN Ia spectral energy distribution. Since the UV region of an SN Ia spectrum is extremely sensitive to the composition of the outer layers of the explosion, which are transparent at longer wavelengths, this unprecedented spectrum can provide strong constraints on the composition of the SN ejecta, and similarly the SN explosion and progenitor system. SN 2011iv is spectroscopically normal, but has a relatively fast decline (Delta m(15)(B) = 1.69 +/- 0.05 mag). We compare SN 2011iv to other SNe Ia with UV spectra near maximum light and examine trends between UV spectral properties, light-curve shape, and ejecta velocity. We tentatively find that SNe with similar light-curve shapes but different ejecta velocities have similar UV spectra, while those with similar ejecta velocities but different light-curve shapes have very different UV spectra. Through a comparison with explosion models, we find that both a solar-metallicity W7 and a zero-metallicity delayed-detonation model provide a reasonable fit to the spectrum of SN 2011iv from the UV to the NIR.
  •  
4.
  • Seitenzahl, Ivo R., et al. (författare)
  • Three-dimensional simulations of gravitationally confined detonations compared to observations of SN 1991T
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 592
  • Tidskriftsartikel (refereegranskat)abstract
    • The gravitationally confined detonation (GCD) model has been proposed as a possible explosion mechanism for Type Ia supernovae in the single-degenerate evolution channel. It starts with ignition of a deflagration in a single off-centre bubble in a near-Chandrasekhar-mass white dwarf. Driven by buoyancy, the deflagration flame rises in a narrow cone towards the surface. For the most part, the main component of the flow of the expanding ashes remains radial, but upon reaching the outer, low-pressure layers of the white dwarf, an additional lateral component develops. This causes the deflagration ashes to converge again at the opposite side, where the compression heats fuel and a detonation may be launched. We first performed five three-dimensional hydrodynamic simulations of the deflagration phase in 1.4 M-circle dot carbon/oxygen white dwarfs at intermediate-resolution (256(3) computational zones). We confirm that the closer the initial deflagration is ignited to the centre, the slower the buoyant rise and the longer the deflagration ashes takes to break out and close in on the opposite pole to collide. To test the GCD explosion model, we then performed a high-resolution (512(3) computational zones) simulation for a model with an ignition spot offset near the upper limit of what is still justifiable, 200 km. This high-resolution simulation met our deliberately optimistic detonation criteria, and we initiated a detonation. The detonation burned through the white dwarf and led to its complete disruption. For this model, we determined detailed nucleosynthetic yields by post-processing 10(6) tracer particles with a 384 nuclide reaction network, and we present multi-band light curves and time-dependent optical spectra. We find that our synthetic observables show a prominent viewing-angle sensitivity in ultraviolet and blue wavelength bands, which contradicts observed SNe Ia. The strong dependence on the viewing angle is caused by the asymmetric distribution of the deflagration ashes in the outer ejecta layers. Finally, we compared our model to SN 1991T. The overall flux level of the model is slightly too low, and the model predicts pre-maximum light spectral features due to Ca, S, and Si that are too strong. Furthermore, the model chemical abundance stratification qualitatively disagrees with recent abundance tomography results in two key areas: our model lacks low-velocity stable Fe and instead has copious amounts of high-velocity Ni-56 and stable Fe. We therefore do not find good agreement of the model with SN 1991T.
  •  
5.
  • Stanishev, Vallery, et al. (författare)
  • SN 2003du: 480 days in the life of a normal type Ia supernova
  • 2007
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 469:2, s. 645-661
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims.We present a study of the optical and near-infrared (NIR) properties of the Type Ia Supernova (SN Ia) 2003du.Methods: An extensive set of optical and NIR photometry and low-resolution long-slit spectra was obtained using a number of facilities. The observations started 13 days before B-band maximum light and continued for 480 days with exceptionally good time sampling. The optical photometry was calibrated through the S-correction technique.Results: The {UBVRIJHK} light curves and the color indices of SN 2003du closely resemble those of normal SNe Ia. SN 2003du reached a B-band maximum of 13.49 ± 0.02 mag on JD2 452 766.38 ± 0.5. We derive a B-band stretch parameter of 0.988 ±0.003, which corresponds to Δ m15=1.02 ±0.05, indicative of a SN Ia of standard luminosity. The reddening in the host galaxy was estimated by three methods, and was consistently found to be negligible. Using an updated calibration of the V and {JHK} absolute magnitudes of SNe Ia, we find a distance modulus μ=32.79±0.15 mag to the host galaxy, UGC 9391. We measure a peak {uvoir} bolometric luminosity of 1.35(±0.20)×1043 erg s-1 and Arnett's rule implies that M56Ni≃0.68 ±0.14 Mȯ of 56Ni was synthesized during the explosion. Modeling of the {uvoir} bolometric light curve also indicates M56Ni in the range 0.6-0.8 Mȯ. The spectral evolution of SN 2003du at both optical and NIR wavelengths also closely resembles normal SNe Ia. In particular, the Si II ratio at maximum R(Si II) = 0.22 ±0.02 and the time evolution of the blueshift velocities of the absorption line minima are typical. The pre-maximum spectra of SN 2003du showed conspicuous high-velocity features in the Ca II H&K doublet and infrared triplet, and possibly in Si II λ6355, lines. We compare the time evolution of the profiles of these lines with other well-observed SNe Ia and we suggest that the peculiar pre-maximum evolution of Si II λ6355 line in many SNe Ia is due to the presence of two blended absorption components.
  •  
6.
  • Wang, Xiaofeng, et al. (författare)
  • Evidence for type ia supernova diversity from ultraviolet observations with the hubble space telescope
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 749:2, s. 126-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present ultraviolet (UV) spectroscopy and photometry of four Type Ia supernovae (SNe 2004dt, 2004ef, 2005M, and 2005cf) obtained with the UV prism of the Advanced Camera for Surveys on the Hubble Space Telescope. This data set provides unique spectral time series down to 2000 angstrom. Significant diversity is seen in the near-maximum-light spectra (similar to 2000-3500 angstrom) for this small sample. The corresponding photometric data, together with archival data from Swift Ultraviolet/Optical Telescope observations, provide further evidence of increased dispersion in the UV emission with respect to the optical. The peak luminositiesmeasured in the uvw1/F250W filter are found to correlate with the B-band light-curve shape parameter Delta m(15)(B), but with much larger scatter relative to the correlation in the broadband B band (e.g., similar to 0.4 mag versus similar to 0.2 mag for those with 0.8 mag < Delta m(15)(B) < 1.7 mag). SN 2004dt is found as an outlier of this correlation (at > 3 sigma), being brighter than normal SNe Ia such as SN 2005cf by similar to 0.9 mag and similar to 2.0 mag in the uvw1/F250W and uvm2/F220W filters, respectively. We show that different progenitor metallicity or line-expansion velocities alone cannot explain such a large discrepancy. Viewing-angle effects, such as due to an asymmetric explosion, may have a significant influence on the flux emitted in the UV region. Detailed modeling is needed to disentangle and quantify the above effects.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy