SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hillenbrand P. M.) "

Sökning: WFRF:(Hillenbrand P. M.)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lestinsky, M., et al. (författare)
  • Physics book: CRYRING@ESR
  • 2016
  • Ingår i: European Physical Journal: Special Topics. - : Springer Science and Business Media LLC. - 1951-6401 .- 1951-6355. ; 225:5, s. 797-882
  • Forskningsöversikt (refereegranskat)abstract
    • The exploration of the unique properties of stored and cooled beams of highly-charged ions as provided by heavy-ion storage rings has opened novel and fascinating research opportunities in the realm of atomic and nuclear physics research. Since the late 1980s, pioneering work has been performed at the CRYRING at Stockholm (Abrahamsson et al. 1993) and at the Test Storage Ring (TSR) at Heidelberg (Baumann et al. 1988). For the heaviest ions in the highest charge-states, a real quantum jump was achieved in the early 1990s by the commissioning of the Experimental Storage Ring (ESR) at GSI Helmholtzzentrum für Schwerionenforschung (GSI) in Darmstadt (Franzke 1987) where challenging experiments on the electron dynamics in the strong field regime as well as nuclear physics studies on exotic nuclei and at the borderline to atomic physics were performed. Meanwhile also at Lanzhou a heavy-ion storage ring has been taken in operation, exploiting the unique research opportunities in particular for medium-heavy ions and exotic nuclei (Xia et al. 2002).
  •  
2.
  • Gohl, K., et al. (författare)
  • Expedition 379 methods
  • 2021
  • Ingår i: Proceedings of the International Ocean Discovery Program. - : International Ocean Discovery Program (IODP). - 2377-3189. ; 379
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • Gohl, K., et al. (författare)
  • Expedition 379 summary
  • 2021
  • Ingår i: Proceedings of the International Ocean Discovery Program. - : International Ocean Discovery Program (IODP). - 2377-3189. ; 79
  • Tidskriftsartikel (refereegranskat)abstract
    • The Amundsen Sea sector of Antarctica has long been considered the most vulnerable part of the West Antarctic Ice Sheet (WAIS) because of the great water depth at the grounding line, a subglacial bed seafloor deepening toward the interior of the continent, and the absence of substantial ice shelves. Glaciers in this configuration are thought to be susceptible to rapid or runaway retreat. Ice flowing into the Amundsen Sea Embayment is undergoing the most rapid changes of any sector of the Antarctic ice sheets outside the Antarctic Peninsula, including substantial grounding-line retreat over recent decades, as observed from satellite data. Recent models suggest that a threshold leading to the collapse of WAIS in this sector may have been already crossed and that much of the ice sheet could be lost even under relatively moderate greenhouse gas emission scenarios.Drill cores from the Amundsen Sea provide tests of several key questions about controls on ice sheet stability. The cores offer a direct offshore record of glacial history in a sector that is exclusively influenced by ice draining the WAIS, which allows clear comparisons between the WAIS history and low-latitude climate records. Today, relatively warm (modified) Circumpolar Deep Water (CDW) is impinging onto the Amundsen Sea shelf and causing melting under ice shelves and at the grounding line of the WAIS in most places. Reconstructions of past CDW intrusions can assess the ties between warm water upwelling and large-scale changes in past grounding-line positions. Carrying out these reconstructions offshore from the drainage basin that currently has the most substantial negative mass balance of ice anywhere in Antarctica is thus of prime interest to future predictions.The scientific objectives for this expedition are built on hypotheses about WAIS dynamics and related paleoenvironmental and paleoclimatic conditions. The main objectives areTo test the hypothesis that WAIS collapses occurred during the Neogene and Quaternary and, if so, when and under which environmental conditions;To obtain ice-proximal records of ice sheet dynamics in the Amundsen Sea that correlate with global records of ice-volume changes and proxy records for atmospheric and ocean temperatures;To study the stability of a marine-based WAIS margin and how warm deepwater incursions control its position on the shelf;To find evidence for the earliest major grounded WAIS advances onto the middle and outer shelf;To test the hypothesis that the first major WAIS growth was related to the uplift of the Marie Byrd Land dome.International Ocean Discovery Program (IODP) Expedition 379 completed two very successful drill sites on the continental rise of the Amundsen Sea. Site U1532 is located on a large sediment drift, now called the Resolution Drift, and it penetrated to 794 m with 90% recovery. We collected almost-continuous cores from recent age through the Pleistocene and Pliocene and into the upper Miocene. At Site U1533, we drilled 383 m (70% recovery) into the more condensed sequence at the lower flank of the same sediment drift. The cores of both sites contain unique records that will enable study of the cyclicity of ice sheet advance and retreat processes as well as ocean-bottom water circulation and water mass changes. In particular, Site U1532 revealed a sequence of Pliocene sediments with an excellent paleomagnetic record for high-resolution climate change studies of the previously sparsely sampled Pacific sector of the West Antarctic margin.Despite the drilling success at these sites, the overall expedition experienced three unexpected difficulties that affected many of the scientific objectives:The extensive sea ice on the continental shelf prevented us from drilling any of the proposed shelf sites.The drill sites on the continental rise were in the path of numerous icebergs of various sizes that frequently forced us to pause drilling or leave the hole entirely as they approached the ship. The overall downtime caused by approaching icebergs was 50% of our time spent on site.A medical evacuation cut the expedition short by 1 week.Recovery of core on the continental rise at Sites U1532 and U1533 cannot be used to indicate the extent of grounded ice on the shelf or, thus, of its retreat directly. However, the sediments contained in these cores offer a range of clues about past WAIS extent and retreat. At Sites U1532 and U1533, coarse-grained sediments interpreted to be ice-rafted debris (IRD) were identified throughout all recovered time periods. A dominant feature of the cores is recorded by lithofacies cyclicity, which is interpreted to represent relatively warmer periods variably characterized by sediments with higher microfossil abundance, greater bioturbation, and higher IRD concentrations alternating with colder periods characterized by dominantly gray laminated terrigenous muds. Initial comparison of these cycles to published late Quaternary records from the region suggests that the units interpreted to be records of warmer time intervals in the core tie to global interglacial periods and the units interpreted to be deposits of colder periods tie to global glacial periods.Cores from the two drill sites recovered sediments of dominantly terrigenous origin intercalated or mixed with pelagic or hemipelagic deposits. In particular, Site U1533, which is located near a deep-sea channel originating from the continental slope, contains graded silts, sands, and gravels transported downslope from the shelf to the rise. The channel is likely the pathway of these sediments transported by turbidity currents and other gravitational downslope processes. The association of lithologic facies at both sites predominantly reflects the interplay of downslope and contouritic sediment supply with occasional input of more pelagic sediment. Despite the lack of cores from the shelf, our records from the continental rise reveal the timing of glacial advances across the shelf and thus the existence of a continent-wide ice sheet in West Antarctica during longer time periods since at least the late Miocene.Cores from both sites contain abundant coarse-grained sediments and clasts of plutonic origin transported either by downslope processes or by ice rafting. If detailed provenance studies confirm our preliminary assessment that the origin of these samples is from the plutonic bedrock of Marie Byrd Land, their thermochronological record will potentially reveal timing and rates of denudation and erosion linked to crustal uplift. The chronostratigraphy of both sites enables the generation of a seismic sequence stratigraphy for the entire Amundsen Sea continental rise, spanning the area offshore from the Amundsen Sea Embayment westward along the Marie Byrd Land margin to the easternmost Ross Sea through a connecting network of seismic lines.
  •  
4.
  • Wellner, J.S., et al. (författare)
  • Site U1532
  • 2021
  • Ingår i: Proceedings of the International Ocean Discovery Program. - : International Ocean Discovery Program (IODP). - 2377-3189. ; 379
  • Tidskriftsartikel (refereegranskat)
  •  
5.
  • Wellner, J.S., et al. (författare)
  • Site U1533
  • 2021
  • Ingår i: Proceedings of the International Ocean Discovery Program. - : International Ocean Discovery Program (IODP). - 2377-3189. ; 379
  • Tidskriftsartikel (refereegranskat)
  •  
6.
  • Bentley, Michael J., et al. (författare)
  • A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum
  • 2014
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 100, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • A robust understanding of Antarctic Ice Sheet deglacial history since the Last Glacial Maximum is important in order to constrain ice sheet and glacial-isostatic adjustment models, and to explore the forcing mechanisms responsible for ice sheet retreat. Such understanding can be derived from a broad range of geological and glaciological datasets and recent decades have seen an upsurge in such data gathering around the continent and Sub-Antarctic islands. Here, we report a new synthesis of those datasets, based on an accompanying series of reviews of the geological data, organised by sector. We present a series of timeslice maps for 20 ka, 15 ka, 10 ka and 5 ka, including grounding line position and ice sheet thickness changes, along with a clear assessment of levels of confidence. The reconstruction shows that the Antarctic Ice sheet did not everywhere reach the continental shelf edge at its maximum, that initial retreat was asynchronous, and that the spatial pattern of deglaciation was highly variable, particularly on the inner shelf. The deglacial reconstruction is consistent with a moderate overall excess ice volume and with a relatively small Antarctic contribution to meltwater pulse la. We discuss key areas of uncertainty both around the continent and by time interval, and we highlight potential priorities for future work. The synthesis is intended to be a resource for the modelling and glacial geological community.
  •  
7.
  • Zhu, B., et al. (författare)
  • X-ray emission associated with radiative recombination for Pb82+ ions at threshold energies
  • 2022
  • Ingår i: Physical Review A: covering atomic, molecular, and optical physics and quantum information. - 2469-9926 .- 2469-9934. ; 105:5
  • Tidskriftsartikel (refereegranskat)abstract
    • For decelerated bare lead ions at a low beam energy of 10 MeV/u, the x-ray emission associated with radiative recombination (RR) at threshold energies has been studied at the electron cooler of CRYRING@ESR at GSI, Darmstadt. In our experiment, we observed the full x-ray emission pattern by utilizing dedicated x-ray detection chambers installed at 0∘ and 180∘ observation geometry. Most remarkably, no line distortion effects due to delayed emission are present in the well-defined x-ray spectra, spanning a wide range of x-ray energies (from about 5 to 100 keV), which enables us to identify fine-structure resolved Lyman, Balmer, and Paschen x-ray lines along with the RR transitions into the K, L, and M shells of the ions. For comparison with theory, an elaborate theoretical model is established taking into account the initial population distribution via RR for all atomic levels up to Rydberg states with principal quantum number n=165 in combination with time-dependent feeding transitions. Within the statistical accuracy, the experimental data are in very good agreement with the results of rigorous relativistic predictions. Most notably, this comparison sheds light on the contribution of prompt and delayed x-ray emission (up to 70 ns) to the observed x-ray spectra, originating in particular from yrast transitions into inner shells.
  •  
8.
  • Müller, A., et al. (författare)
  • Photoionization of metastable heliumlike C4+ (1s2s S-3(1)) ions : Precision study of intermediate doubly excited states
  • 2018
  • Ingår i: Physical Review A: covering atomic, molecular, and optical physics and quantum information. - 2469-9926 .- 2469-9934. ; 98:3
  • Tidskriftsartikel (refereegranskat)abstract
    • In a joint experimental and theoretical endeavor, photoionization of metastable C4+ (1s2s S-3(1)) ions via intermediate levels with hollow, double-K-vacancy configurations 2s2p, 2s3p, 2p3s, 2p3d, 2s4p, 2p4s, and 2p4d has been investigated. High-resolution photon-ion merged-beams measurements were carried out with the resolving power reaching up to 25 800 which is sufficient to separate the leading fine-structure components of the 2s2p P-3 term. Many-body perturbation theory was employed to determine level-to-level cross sections for K-shell excitation with subsequent autoionization. The resonance energies were calculated with inclusion of electron correlation and radiative contributions. Their uncertainties are estimated to be below +/- 1 meV. Detailed balance confirms the present photoionization cross-section results by comparison with previous dielectronic-recombination measurements. The high accuracy of the theoretical transition energies together with the present experimental results qualify photoabsorption resonances in heliumlike ions as new, greatly improved energy-reference standards at synchrotron radiation facilities.
  •  
9.
  • Gumberidze, A., et al. (författare)
  • Electron- and proton-impact excitation of heliumlike uranium in relativistic collisions
  • 2019
  • Ingår i: Physical Review A: covering atomic, molecular, and optical physics and quantum information. - 2469-9926 .- 2469-9934. ; 99:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We have studied the K-shell excitation of He-like uranium (U90+) in relativistic collisions with hydrogen and argon atoms. Performing measurements with different targets, as well as with different collision energies, enabled us to explore the proton- (nucleus-) impact excitation as well as the electron-impact excitation process for the heaviest He-like ion. The large fine-structure splitting in uranium allowed us to partially resolve excitation into different L-shell levels. State-of-the-art relativistic calculations which include excitation mechanisms due to the interaction with both protons (nucleus) and electrons are in good agreement with the experimental findings. Moreover, our experimental data clearly demonstrate the importance of including the generalized Breit interaction in the treatment of the electron-impact excitation process.
  •  
10.
  • Klages, J. P., et al. (författare)
  • Temperate rainforests near the South Pole during peak Cretaceous warmth
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 580:7801, s. 81-86
  • Tidskriftsartikel (refereegranskat)abstract
    • The mid-Cretaceous period was one of the warmest intervals of the past 140millionyears1–5, driven by atmospheric carbon dioxide levels of around 1,000parts per million by volume6. In the near absence of proximal geological records from south of the Antarctic Circle, it is disputed whether polar ice could exist under such environmental conditions. Here we use a sedimentary sequence recovered from the West Antarctic shelf—the southernmost Cretaceous record reported so far—and show that a temperate lowland rainforest environment existed at a palaeolatitude of about 82°S during the Turonian–Santonian age (92 to 83millionyearsago). This record contains an intact 3-metre-long network of in situ fossil roots embedded in a mudstone matrix containing diverse pollen and spores. A climate model simulation shows that the reconstructed temperate climate at this high latitude requires a combination of both atmospheric carbon dioxide concentrations of 1,120–1,680parts per million by volume and a vegetated land surface without major Antarctic glaciation, highlighting the important cooling effect exerted by ice albedo under high levels of atmospheric carbon dioxide. © 2020, The Author(s), under exclusive licence to Springer Nature Limited.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy