SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hiltunen J. Kalervo) "

Sökning: WFRF:(Hiltunen J. Kalervo)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jokipii-Lukkari, Soile, et al. (författare)
  • Dual targeted poplar ferredoxin NADP+ oxidoreductase interacts with hemoglobin 1
  • 2016
  • Ingår i: Plant Science. - : Elsevier BV. - 0168-9452. ; 247, s. 138-149
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous reports have connected non-symbiotic and truncated hemoglobins (Hbs) to metabolism of nitric oxide (NO), an important signalling molecule involved in wood formation. We have studied the capability of poplar (Populus tremula × tremuloides) Hbs PttHb1 and PttTrHb proteins alone or with a flavin-protein reductase to relieve NO cytotoxicity in living cells. Complementation tests in a Hb-deficient, NO-sensitive yeast (Saccharomyces cerevisiae) δyhb1 mutant showed that neither PttHb1 nor PttTrHb alone protected cells against NO. To study the ability of Hbs to interact with a reductase, ferredoxin NADP+ oxidoreductase PtthFNR was characterized by sequencing and proteomics. To date, by far the greatest number of the known dual-targeted plant proteins are directed to chloroplasts and mitochondria. We discovered a novel variant of hFNR that lacks the plastid presequence and resides in cytosol. The coexpression of PttHb1 and PtthFNR partially restored NO resistance of the yeast δyhb1 mutant, whereas PttTrHb coexpressed with PtthFNR failed to rescue growth. YFP fusion proteins confirmed the interaction between PttHb1 and PtthFNR in plant cells. The structural modelling results indicate that PttHb1 and PtthFNR are able to interact as NO dioxygenase. This is the first report on dual targeting of central plant enzyme FNR to plastids and cytosol.
  •  
2.
  • Sridhar, Shruthi, et al. (författare)
  • Crystallographic binding studies of rat peroxisomal multifunctional enzyme type 1 with 3-ketodecanoyl-CoA : capturing active and inactive states of its hydratase and dehydrogenase catalytic sites
  • 2020
  • Ingår i: Acta Crystallographica Section D. - : International Union of Crystallography (IUCr). - 2059-7983. ; 76:12, s. 1256-1269
  • Tidskriftsartikel (refereegranskat)abstract
    • The peroxisomal multifunctional enzyme type 1 (MFE1) catalyzes two successive reactions in the beta-oxidation cycle: the 2E-enoyl-CoA hydratase (ECH) and NAD(+)-dependent 3S-hydroxyacyl-CoA dehydrogenase (HAD) reactions. MFE1 is a monomeric enzyme that has five domains. The N-terminal part (domains A and B) adopts the crotonase fold and the C-terminal part (domains C, D and E) adopts the HAD fold. A new crystal form of MFE1 has captured a conformation in which both active sites are noncompetent. This structure, at 1.7 angstrom resolution, shows the importance of the interactions between Phe272 in domain B (the linker helix; helix H10 of the crotonase fold) and the beginning of loop 2 (of the crotonase fold) in stabilizing the competent ECH active-site geometry. In addition, protein crystallographic binding studies using optimized crystal-treatment protocols have captured a structure with both the 3-ketodecanoyl-CoA product and NAD(+) bound in the HAD active site, showing the interactions between 3-ketodecanoyl-CoA and residues of the C, D and E domains. Structural comparisons show the importance of domain movements, in particular of the C domain with respect to the D/E domains and of the A domain with respect to the HAD part. These comparisons suggest that the N-terminal part of the linker helix, which interacts tightly with domains A and E, functions as a hinge region for movement of the A domain with respect to the HAD part.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy