SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hinrichsen H) "

Sökning: WFRF:(Hinrichsen H)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hinrichsen, H. -H, et al. (författare)
  • Biophysical modeling of survival and dispersal of Central and Eastern Baltic Sea flounder (Platichthys flesus) larvae
  • 2018
  • Ingår i: Journal of Sea Research. - : Elsevier BV. - 1385-1101 .- 1873-1414. ; 142, s. 11-20
  • Tidskriftsartikel (refereegranskat)abstract
    • The period of larval drift into a suitable nursery area is considered to be of great significance for recruitment variability in flatfish. Here, a hydrodynamic model coupled with a Lagrangian particle tracking technique was utilized to study the drift from the first feeding larval stage until time of settlement of Central and Eastern Baltic flounder (Platichthys flesus), originating from spawning in the Baltic Sea deep basins, the Arkona- and Bornholm basin (central Baltic Sea), and the Gdansk deep and Gotland basin (eastern Baltic Sea). We examined the spatio-temporal dynamics of the probability to settle in preferred nursery habitat by detailed drift model simulations. The study suggests that the majority of larvae (89% and 74% for Central- and Eastern Baltic flounder, respectively) drift towards coastal areas and settle at metamorphosis ≤20 km from a sandy habitat enabling further migration to a preferred nursery area, i.e. larval drift seems not to be a major bottleneck in recruitment of flounder spawning in the Baltic Sea deep basins. The drift model results suggest that Central Baltic flounder utilize nursery areas mainly in the central and western Baltic, and in the Kattegat, whereas Eastern Baltic flounder mainly utilize the coast in the central and eastern Baltic. Thus, the two stock components seem to use different nursery areas following settlement. Further, in accordance with the “nursery size hypothesis”, the model demonstrates that larvae from the Bornholm basin, utilizing areas with extensive distribution of preferred nursery habitat, display the highest relative successful transport to nursery grounds until settling (72% of successfully settled larvae), suggesting that spawning in the Bornholm Basin is of great importance for stock recruitment of deep basin spawning Baltic flounder.
  •  
2.
  •  
3.
  •  
4.
  • Hinrichsen, H-H, et al. (författare)
  • Spawning areas of eastern Baltic cod revisited : Using hydrodynamic modelling to reveal spawning habitat suitability, egg survival probability, and connectivity patterns
  • 2016
  • Ingår i: Progress in Oceanography. - : Elsevier BV. - 0079-6611 .- 1873-4472. ; 143, s. 13-25
  • Forskningsöversikt (refereegranskat)abstract
    • In the highly variable environment of the Baltic Sea two genetically distinct cod stocks exist, one west of the island of Bornholm, which is referred to as the western stock, and one to the east of Bornholm, the eastern stock. A hydrodynamic model combined with a Lagrangian particle tracking technique was utilised to provide spatially and temporally resolved long-term information on environmentally-related (i) spawning habitat size, (ii) egg/yolk-sac larval survival, (iii) separation of causes of mortality, and (iv) connectivity between spawning areas of eastern Baltic cod. Simulations were performed to quantify processes generating heterogeneity in spatial distribution of cod eggs and yolk sac larvae up to the first feeding stage. The spatial extent of cod eggs represented as virtual drifters is primarily determined by oxygen and salinity conditions at spawning, which define the habitat requirement to which cod's physiology is suited for egg development. The highest habitat suitability occurred in the Bornholm Basin, followed by the Gdansk Deep, while relatively low habitat suitability was obtained for the Arkona and the Gotland Basin. During drift egg and yolk sac larval survival is to a large extent affected by sedimentation. Eggs initially released in the western spawning grounds (Arkona and Bornholm Basin) were more affected by sedimentation than those released in the eastern spawning grounds (Gdansk Deep and Gotland Basin). Highest relative survival of eastern Baltic cod eggs occurred in the Bornholm Basin, with a pronounced decrease towards the Gdansk Deep and the Gotland Basin. Relatively low survival rates in the Gdansk Deep and in the Gotland Basin were attributable to oxygen-dependent mortality. Low oxygen content had almost no impact on survival in the Arkona Basin. For all spawning areas temperature dependent mortality was only evident after severe winters. Egg buoyancy in relation to topographic features like bottom sills and strong bottom slopes could appear as a barrier for the transport of Baltic cod eggs and yolk sac larvae and could potentially limit the connectivity of Baltic cod early life stages between the different basins in the western and eastern Baltic Sea. The possibility of an eastward directed transport up to the first-feeding larval stage exists only for eggs and yolk sac larvae at high buoyancy levels, suggesting that dispersal of early life stages between these spawning areas is limited.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy