SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hirohata S.) "

Sökning: WFRF:(Hirohata S.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ruilope, LM, et al. (författare)
  • Design and Baseline Characteristics of the Finerenone in Reducing Cardiovascular Mortality and Morbidity in Diabetic Kidney Disease Trial
  • 2019
  • Ingår i: American journal of nephrology. - : S. Karger AG. - 1421-9670 .- 0250-8095. ; 50:5, s. 345-356
  • Tidskriftsartikel (refereegranskat)abstract
    • <b><i>Background:</i></b> Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. <b><i>Patients and</i></b> <b><i>Methods:</i></b> The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate ≥25 mL/min/1.73 m<sup>2</sup> and albuminuria (urinary albumin-to-creatinine ratio ≥30 to ≤5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level α = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. <b><i>Conclusions:</i></b> FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049.
  •  
2.
  • Dieny, B., et al. (författare)
  • Opportunities and challenges for spintronics in the microelectronics industry
  • 2020
  • Ingår i: Nature Electronics. - : Springer Science and Business Media LLC. - 2520-1131. ; 3:8, s. 446-459
  • Tidskriftsartikel (refereegranskat)abstract
    • This Review Article examines the potential of spintronics in four key areas of application -memories, sensors, microwave devices, and logic devices - and discusses the challenges that need be addressed in order to integrate spintronic materials and functionalities into mainstream microelectronic platforms. Spintronic devices exploit the spin, as well as the charge, of electrons and could bring new capabilities to the microelectronics industry. However, in order for spintronic devices to meet the ever-increasing demands of the industry, innovation in terms of materials, processes and circuits are required. Here, we review recent developments in spintronics that could soon have an impact on the microelectronics and information technology industry. We highlight and explore four key areas: magnetic memories, magnetic sensors, radio-frequency and microwave devices, and logic and non-Boolean devices. We also discuss the challenges-at both the device and the system level-that need be addressed in order to integrate spintronic materials and functionalities into mainstream microelectronic platforms.
  •  
3.
  • Lauvsnes, M. B., et al. (författare)
  • Neurofilament light in plasma is a potential biomarker of central nervous system involvement in systemic lupus erythematosus
  • 2022
  • Ingår i: Journal of Neurology. - : Springer Science and Business Media LLC. - 0340-5354 .- 1432-1459. ; 269, s. 3064-3074
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Neuropsychiatric manifestations (NP) are common in systemic lupus erythematosus (SLE). However, the pathophysiological mechanisms are not completely understood. Neurofilament light protein (NfL) is part of the neuronal cytoskeleton. Increased NfL concentrations, reflecting neurodegeneration, is observed in cerebrospinal fluid (CSF) in several neurodegenerative and neuroinflammatory conditions. We aimed to explore if plasma NfL could serve as a biomarker for central nervous system (CNS) involvement in SLE. Methods Sixty-seven patients with SLE underwent neurological examination; 52 underwent lumbar puncture, while 62 underwent cerebral magnetic resonance imaging (MRI). We measured selected auto-antibodies and other laboratory variables postulated to have roles in NP pathophysiology in the blood and/or CSF. We used SPM12 software for MRI voxel-based morphometry. Results Age-adjusted linear regression analyses revealed increased plasma NfL concentrations with increasing creatinine (beta = 0.01, p < 0.001) and Q-albumin (beta = 0.07, p = 0.008). We observed higher plasma NfL concentrations in patients with a history of seizures (beta = 0.57, p = 0.014), impaired motor function (beta = 0.36, p = 0.008), increasing disease activity (beta = 0.04, p = 0.008), and organ damage (beta = 0.10, p = 0.002). Voxel-based morphometry suggested an association between increasing plasma NfL concentrations and the loss of cerebral white matter in the corpus callosum and hippocampal gray matter. Conclusion Increased plasma NfL concentrations were associated with some abnormal neurological, cognitive, and neuroimaging findings. However, plasma NfL was also influenced by other factors, such as damage accrual, creatinine, and Q-albumin, thereby obscuring the interpretation of how plasma NfL reflects CNS involvement. Taken together, NfL in CSF seems a better marker of neuronal injury than plasma NfL in patients with SLE.
  •  
4.
  • Tjensvoll, Anne B, et al. (författare)
  • Neurofilament light is a biomarker of brain involvement in lupus and primary Sjögren's syndrome.
  • 2021
  • Ingår i: Journal of neurology. - : Springer Science and Business Media LLC. - 1432-1459 .- 0340-5354. ; 268, s. 1385-1394
  • Tidskriftsartikel (refereegranskat)abstract
    • To test the hypothesis that neurofilament light (NfL) in CSF is a biomarker of CNS involvement in patients with systemic lupus erythematosus (SLE) and primary Sjögren's syndrome (pSS), we measured NfL in CSF from 52 patients with lupus and 54 with pSS and explored associations with clinical, structural, immunological and biochemical abnormalities.In CSF, we measured NfL, anti-P antibodies, protein S100B and TWEAK by ELISA and anti-NR2 antibodies by electrochemiluminescence. Anti-phospholipid antibodies and routine immunological tests were performed in blood. IgG and albumin were measured in CSF and serum for assessment of the blood-brain barrier function (Q-albumin) and intrathecal IgG production (IgG index). Cerebral MRI and neuropsychological testing were performed.A multivariable regression model showed that increasing CSF anti-NR2 antibody levels were associated with increasing NfL levels in patients with SLE (B 1.27, 95% CI 0.88-1.65, p<0.001). Age contributed significantly in the model (B 0.04, 95% CI 0.03-0.05, p<0.001). Similar findings were observed in the pSS group. Adjusted for age and sex, no associations were found between NfL levels and any MRI data. In SLE patients, higher NfL concentrations were associated with impairments in psychomotor speed and motor function, and in pSS with motor dysfunction. These associations remained in multivariable regression models.Increased concentration of NfL in CSF is a marker of cerebral involvement in patients with SLE and pSS, is strongly associated with the presence of anti-NR2 antibodies, and correlates with cognitive impairment in several domains.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy