SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hjorth E.) "

Sökning: WFRF:(Hjorth E.)

  • Resultat 1-10 av 174
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Amati, L., et al. (författare)
  • The THESEUS space mission concept : science case, design and expected performances
  • 2018
  • Ingår i: Advances in Space Research. - : ELSEVIER SCI LTD. - 0273-1177 .- 1879-1948. ; 62:1, s. 191-244
  • Tidskriftsartikel (refereegranskat)abstract
    • THESEUS is a space mission concept aimed at exploiting Gamma-Ray Bursts for investigating the early Universe and at providing a substantial advancement of multi-messenger and time-domain astrophysics. These goals will be achieved through a unique combination of instruments allowing GRB and X-ray transient detection over a broad field of view (more than 1 sr) with 0.5-1 arcmin localization, an energy band extending from several MeV down to 0.3 keV and high sensitivity to transient sources in the soft X-ray domain, as well as on-board prompt (few minutes) follow-up with a 0.7 m class IR telescope with both imaging and spectroscopic capabilities. THESEUS will be perfectly suited for addressing the main open issues in cosmology such as, e.g., star formation rate and metallicity evolution of the inter-stellar and intra-galactic medium up to redshift similar to 10, signatures of Pop III stars, sources and physics of re-ionization, and the faint end of the galaxy luminosity function. In addition, it will provide unprecedented capability to monitor the X-ray variable sky, thus detecting, localizing, and identifying the electromagnetic counterparts to sources of gravitational radiation, which may be routinely detected in the late '20s/early '30s by next generation facilities like aLIGO/ aVirgo, eLISA, KAGRA, and Einstein Telescope. THESEUS will also provide powerful synergies with the next generation of multi-wavelength observatories (e.g., LSST, ELT, SKA, CTA, ATHENA).
  •  
2.
  • Ackley, K., et al. (författare)
  • Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 643
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Gravitational wave (GW) astronomy has rapidly reached maturity, becoming a fundamental observing window for modern astrophysics. The coalescences of a few tens of black hole (BH) binaries have been detected, while the number of events possibly including a neutron star (NS) is still limited to a few. On 2019 August 14, the LIGO and Virgo interferometers detected a high-significance event labelled S190814bv. A preliminary analysis of the GW data suggests that the event was likely due to the merger of a compact binary system formed by a BH and a NS.Aims. In this paper, we present our extensive search campaign aimed at uncovering the potential optical and near infrared electromagnetic counterpart of S190814bv. We found no convincing electromagnetic counterpart in our data. We therefore use our non-detection to place limits on the properties of the putative outflows that could have been produced by the binary during and after the merger.Methods. Thanks to the three-detector observation of S190814bv, and given the characteristics of the signal, the LIGO and Virgo Collaborations delivered a relatively narrow localisation in low latency - a 50% (90%) credible area of 5 deg(2) (23 deg(2)) - despite the relatively large distance of 26752 Mpc. ElectromagNetic counterparts of GRAvitational wave sources at the VEry Large Telescope collaboration members carried out an intensive multi-epoch, multi-instrument observational campaign to identify the possible optical and near infrared counterpart of the event. In addition, the ATLAS, GOTO, GRAWITA-VST, Pan-STARRS, and VINROUGE projects also carried out a search on this event. In this paper, we describe the combined observational campaign of these groups.Results. Our observations allow us to place limits on the presence of any counterpart and discuss the implications for the kilonova (KN), which was possibly generated by this NS-BH merger, and for the strategy of future searches. The typical depth of our wide-field observations, which cover most of the projected sky localisation probability (up to 99.8%, depending on the night and filter considered), is r similar to 22 (resp. K similar to 21) in the optical (resp. near infrared). We reach deeper limits in a subset of our galaxy-targeted observations, which cover a total similar to 50% of the galaxy-mass-weighted localisation probability. Altogether, our observations allow us to exclude a KN with large ejecta mass M greater than or similar to 0.1 M-circle dot to a high (> 90%) confidence, and we can exclude much smaller masses in a sub-sample of our observations. This disfavours the tidal disruption of the neutron star during the merger.Conclusions. Despite the sensitive instruments involved in the campaign, given the distance of S190814bv, we could not reach sufficiently deep limits to constrain a KN comparable in luminosity to AT 2017gfo on a large fraction of the localisation probability. This suggests that future (likely common) events at a few hundred megaparsecs will be detected only by large facilities with both a high sensitivity and large field of view. Galaxy-targeted observations can reach the needed depth over a relevant portion of the localisation probability with a smaller investment of resources, but the number of galaxies to be targeted in order to get a fairly complete coverage is large, even in the case of a localisation as good as that of this event.
  •  
3.
  • Agudo, I., et al. (författare)
  • Panning for gold, but finding helium: Discovery of the ultra-stripped supernova SN 2019wxt from gravitational-wave follow-up observations
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 675
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results from multi-wavelength observations of a transient discovered during an intensive follow-up campaign of S191213g, a gravitational wave (GW) event reported by the LIGO-Virgo Collaboration as a possible binary neutron star merger in a low latency search. This search yielded SN 2019wxt, a young transient in a galaxy whose sky position (in the 80% GW contour) and distance (∼150 Mpc) were plausibly compatible with the localisation uncertainty of the GW event. Initially, the transienta's tightly constrained age, its relatively faint peak magnitude (Mi ∼ -16.7 mag), and the r-band decline rate of ∼1 mag per 5 days appeared suggestive of a compact binary merger. However, SN 2019wxt spectroscopically resembled a type Ib supernova, and analysis of the optical-near-infrared evolution rapidly led to the conclusion that while it could not be associated with S191213g, it nevertheless represented an extreme outcome of stellar evolution. By modelling the light curve, we estimated an ejecta mass of only ∼0.1 M·, with 56Ni comprising ∼20% of this. We were broadly able to reproduce its spectral evolution with a composition dominated by helium and oxygen, with trace amounts of calcium. We considered various progenitor channels that could give rise to the observed properties of SN 2019wxt and concluded that an ultra-stripped origin in a binary system is the most likely explanation. Disentangling genuine electromagnetic counterparts to GW events from transients such as SN 2019wxt soon after discovery is challenging: in a bid to characterise this level of contamination, we estimated the rate of events with a volumetric rate density comparable to that of SN 2019wxt and found that around one such event per week can occur within the typical GW localisation area of O4 alerts out to a luminosity distance of 500 Mpc, beyond which it would become fainter than the typical depth of current electromagnetic follow-up campaigns.
  •  
4.
  • Esposito, M., et al. (författare)
  • HD 219666 b: a hot-Neptune from TESS Sector 1
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 623:623
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the confirmation and mass determination of a transiting planet orbiting the old and inactive G7 dwarf star HD219666 (M-star = 0.92 +/- 0.03 M-circle dot, R-star = 1.03 +/- 0.03 R-circle dot, tau(star) = 10 +/- 2 Gyr). With a mass of M-b = 16.6 +/- 1.3 M-circle plus, a radius of R-b = 4.71 +/- 0.17 R-circle plus, and an orbital period of P-orb similar or equal to 6 days, HD219666 b is a new member of a rare class of exoplanets: the hot-Neptunes. The Transiting Exoplanet Survey Satellite (TESS) observed HD219666 (also known as TOI-118) in its Sector 1 and the light curve shows four transit-like events, equally spaced in time. We confirmed the planetary nature of the candidate by gathering precise radial-velocity measurements with the High Accuracy Radial velocity Planet Searcher (HARPS) at ESO 3.6 m. We used the co-added HARPS spectrum to derive the host star fundamental parameters (T-eff = 5527 +/- 65 K, log g(star) = 4.40 +/- 0.11 (cgs), [Fe/H] = 0.04 +/- 0.04 dex, log R-HK' = -5.07 +/- 0.03), as well as the abundances of many volatile and refractory elements. The host star brightness (V = 9.9) makes it suitable for further characterisation by means of in-transit spectroscopy. The determination of the planet orbital obliquity, along with the atmospheric metal-to-hydrogen content and thermal structure could provide us with important clues on the formation mechanisms of this class of objects.
  •  
5.
  •  
6.
  • Kann, D. A., et al. (författare)
  • THE AFTERGLOWS OF SWIFT-ERA GAMMA-RAY BURSTS. I. COMPARING PRE-SWIFT AND SWIFT-ERA LONG/SOFT (TYPE II) GRB OPTICAL AFTERGLOWS
  • 2010
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 720:2, s. 1513-1558
  • Tidskriftsartikel (refereegranskat)abstract
    • We have gathered optical photometry data from the literature on a large sample of Swift-era gamma-ray burst (GRB) afterglows including GRBs up to 2009 September, for a total of 76 GRBs, and present an additional three pre-Swift GRBs not included in an earlier sample. Furthermore, we publish 840 additional new photometry data points on a total of 42 GRB afterglows, including large data sets for GRBs 050319, 050408, 050802, 050820A, 050922C, 060418, 080413A, and 080810. We analyzed the light curves of all GRBs in the sample and derived spectral energy distributions for the sample with the best data quality, allowing us to estimate the host-galaxy extinction. We transformed the afterglow light curves into an extinction-corrected z = 1 system and compared their luminosities with a sample of pre-Swift afterglows. The results of a former study, which showed that GRB afterglows clustered and exhibited a bimodal distribution in luminosity space, are weakened by the larger sample. We found that the luminosity distribution of the two afterglow samples (Swift-era and pre-Swift) is very similar, and that a subsample for which we were not able to estimate the extinction, which is fainter than the main sample, can be explained by assuming a moderate amount of line-of-sight host extinction. We derived bolometric isotropic energies for all GRBs in our sample, and found only a tentative correlation between the prompt energy release and the optical afterglow luminosity at 1 day after the GRB in the z = 1 system. A comparative study of the optical luminosities of GRB afterglows with echelle spectra (which show a high number of foreground absorbing systems) and those without, reveals no indication that the former are statistically significantly more luminous. Furthermore, we propose the existence of an upper ceiling on afterglow luminosities and study the luminosity distribution at early times, which was not accessible before the advent of the Swift satellite. Most GRBs feature afterglows that are dominated by the forward shock from early times on. Finally, we present the first indications of a class of long GRBs, which form a bridge between the typical high-luminosity, high-redshift events and nearby low-luminosity events (which are also associated with spectroscopic supernovae) in terms of energetics and observed redshift distribution, indicating a continuous distribution overall.
  •  
7.
  • Levan, A. J., et al. (författare)
  • The Environment of the Binary Neutron Star Merger GW170817
  • 2017
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 848:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Hubble Space Telescope (HST) and Chandra imaging, combined with Very Large Telescope MUSE integral field spectroscopy of the counterpart and host galaxy of the first binary neutron star merger detected via gravitational-wave emission by LIGO and Virgo, GW170817. The host galaxy, NGC 4993, is an S0 galaxy at z - 0.009783. There is evidence for large, face-on spiral shells in continuum imaging, and edge-on spiral features visible in nebular emission lines. This suggests that NGC 4993 has undergone a relatively recent (less than or similar to 1 Gyr) dry merger. This merger may provide the fuel for a weak active nucleus seen in Chandra imaging. At the location of the counterpart, HST imaging implies there is no globular or young stellar cluster, with a limit of a few thousand solar masses for any young system. The population in the vicinity is predominantly old with less than or similar to 1% of any light arising from a population with ages <500 Myr. Both the host galaxy properties and those of the transient location are consistent with the distributions seen for short-duration gamma-ray bursts, although the source position lies well within the effective radius (r(e) similar to 3 kpc), providing an r(e)-normalized offset that is closer than similar to 90% of short GRBs. For the long delay time implied by the stellar population, this suggests that the kick velocity was significantly less than the galaxy escape velocity. We do not see any narrow host galaxy interstellar medium features within the counterpart spectrum, implying low extinction, and that the binary may lie in front of the bulk of the host galaxy.
  •  
8.
  • Margutti, R., et al. (författare)
  • A PANCHROMATIC VIEW OF THE RESTLESS SN 2009ip REVEALS THE EXPLOSIVE EJECTION OF A MASSIVE STAR ENVELOPE
  • 2014
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 780:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The double explosion of SN 2009ip in 2012 raises questions about our understanding of the late stages of massive star evolution. Here we present a comprehensive study of SN 2009ip during its remarkable rebrightenings. High-cadence photometric and spectroscopic observations from the GeV to the radio band obtained from a variety of ground-based and space facilities (including the Very Large Array, Swift, Fermi, Hubble Space Telescope, and XMM) constrain SN 2009ip to be a low energy (E similar to 1050 erg for an ejecta mass similar to 0.5 M-circle dot) and asymmetric explosion in a complex medium shaped by multiple eruptions of the restless progenitor star. Most of the energy is radiated as a result of the shock breaking out through a dense shell of material located at similar to 5 x 10(14) cm with M similar to 0.1 M-circle dot, ejected by the precursor outburst similar to 40 days before the major explosion. We interpret the NIR excess of emission as signature of material located further out, the origin of which has to be connected with documented mass-loss episodes in the previous years. Our modeling predicts bright neutrino emission associated with the shock break-out if the cosmic-ray energy is comparable to the radiated energy. We connect this phenomenology with the explosive ejection of the outer layers of the massive progenitor star, which later interacted with material deposited in the surroundings by previous eruptions. Future observations will reveal if the massive luminous progenitor star survived. Irrespective of whether the explosion was terminal, SN 2009ip brought to light the existence of new channels for sustained episodic mass loss, the physical origin of which has yet to be identified.
  •  
9.
  • Schulze, S., et al. (författare)
  • GRB 120422A/SN 2012bz : Bridging the gap between low- and high-luminosity gamma-ray bursts
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 566
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. At low redshift, a handful of gamma-ray bursts (GRBs) have been discovered with luminosities that are substantially lower (L-iso less than or similar to 10(48.5) erg s(-1)) than the average of more distant ones (L-iso greater than or similar to 10(49.5) erg s(-1)). It has been suggested that the properties of several low-luminosity (low-L) GRBs are due to shock break-out, as opposed to the emission from ultrarelativistic jets. This has led to much debate about how the populations are connected. Aims. The burst at redshift z = 0.283 from 2012 April 22 is one of the very few examples of intermediate-L GRBs with a gamma-ray luminosity of L-iso similar to 10(49.6-49.9) erg s(-1) that have been detected up to now. With the robust detection of its accompanying supernova SN 2012bz, it has the potential to answer important questions on the origin of low-and high-L GRBs and the GRB-SN connection. Methods. We carried out a spectroscopy campaign using medium-and low-resolution spectrographs with 6-10-m class telescopes, which covered a time span of 37.3 days, and a multi-wavelength imaging campaign, which ranged from radio to X-ray energies over a duration of similar to 270 days. Furthermore, we used a tuneable filter that is centred at H alpha to map star-formation in the host and the surrounding galaxies. We used these data to extract and model the properties of different radiation components and fitted the spectral energy distribution to extract the properties of the host galaxy. Results. Modelling the light curve and spectral energy distribution from the radio to the X-rays revealed that the blast wave expanded with an initial Lorentz factor of Gamma(0) similar to 50, which is a low value in comparison to high-L GRBs, and that the afterglow had an exceptionally low peak luminosity density of less than or similar to 2 x 10(30) erg s(-1) Hz(-1) in the sub-mm. Because of the weak afterglow component, we were able to recover the signature of a shock break-out in an event that was not a genuine low-L GRB for the first time. At 1.4 hr after the burst, the stellar envelope had a blackbody temperature of k(B)T similar to 16 eV and a radius of similar to 7 x 10(13) cm (both in the observer frame). The accompanying SN 2012bz reached a peak luminosity of M-V = -19.7 mag, which is 0.3 mag more luminous than SN 1998bw. The synthesised nickel mass of 0.58 M-circle dot, ejecta mass of 5.87 M-circle dot, and kinetic energy of 4.10x10(52) erg were among the highest for GRB-SNe, which makes it the most luminous spectroscopically confirmed SN to date. Nebular emission lines at the GRB location were visible, which extend from the galaxy nucleus to the explosion site. The host and the explosion site had close-to-solar metallicity. The burst occurred in an isolated star-forming region with an SFR that is 1/10 of that in the galaxy's nucleus. Conclusions. While the prompt gamma-ray emission points to a high-L GRB, the weak afterglow and the low Gamma(0) were very atypical for such a burst. Moreover, the detection of the shock break-out signature is a new quality for high-L GRBs. So far, shock break-outs were exclusively detected for low-L GRBs, while GRB 120422A had an intermediate L-iso of similar to 10(49.6-49.9) erg s(-1). Therefore, we conclude that GRB 120422A was a transition object between low-and high-L GRBs, which supports the failed-jet model that connects low-L GRBs that are driven by shock break-outs and high-L GRBs that are powered by ultra-relativistic jets.
  •  
10.
  • Selsing, J., et al. (författare)
  • The X-shooter GRB afterglow legacy sample (XS-GRB)
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 623
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work we present spectra of all gamma-ray burst (GRB) afterglows that have been promptly observed with the X-shooter spectrograph until 31/03/2017. In total, we have obtained spectroscopic observations of 103 individual GRBs observed within 48 hours of the GRB trigger. Redshifts have been measured for 97 per cent of these, covering a redshift range from 0.059 to 7.84. Based on a set of observational selection criteria that minimise biases with regards to intrinsic properties of the GRBs, the follow-up effort has been focused on producing a homogeneously selected sample of 93 afterglow spectra for GRBs discovered by the Swift satellite. We here provide a public release of all the reduced spectra, including continuum estimates and telluric absorption corrections. For completeness, we also provide reductions for the 18 late-time observations of the underlying host galaxies. We provide an assessment of the degree of completeness with respect to the parent GRB population, in terms of the X-ray properties of the bursts in the sample and find that the sample presented here is representative of the full Swift sample. We have constrained the fraction of dark bursts to be <28 per cent and confirm previous results that higher optical darkness is correlated with increased X-ray absorption. For the 42 bursts for which it is possible, we have provided a measurement of the neutral hydrogen column density, increasing the total number of published HI column density measurements by similar to 33 per cent. This dataset provides a unique resource to study the ISM across cosmic time, from the local progenitor surroundings to the intervening Universe.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 174
Typ av publikation
tidskriftsartikel (152)
konferensbidrag (11)
forskningsöversikt (8)
bokkapitel (2)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (162)
övrigt vetenskapligt/konstnärligt (12)
Författare/redaktör
Hjorth, J. (41)
Schultzberg, M (25)
Hjorth, Lars (24)
Hjorth, M. (24)
Tanvir, N. R. (23)
Wiersema, K. (23)
visa fler...
Fynbo, J. P. U. (22)
Jakobsson, P (20)
Levan, A. J. (19)
Malesani, D. (19)
Sollerman, Jesper (18)
Kuehni, Claudia E (18)
Skinner, Roderick (17)
Covino, S. (16)
D'Elia, V (15)
Milvang-Jensen, B. (14)
Watson, D. (14)
Xu, D. (13)
Pian, E. (13)
Reulen, Raoul C. (13)
Bardi, Edit (13)
Piranomonte, S. (12)
Vergani, S. D. (12)
Schulze, S. (12)
Cano, Z. (11)
Kann, D. A. (11)
Greiner, J. (11)
Palazzi, E. (11)
Fridlund, Malcolm, 1 ... (11)
Garwicz, Stanislaw (11)
Gorosabel, J. (11)
Persson, Carina, 196 ... (11)
Castro-Tirado, A. J. (10)
Allodji, Rodrigue S. (10)
Winther, Jeanette F (10)
Rossi, A. (9)
Wijers, R. A. M. J. (9)
Goldoni, P. (9)
Schady, P. (9)
D'Avanzo, P. (9)
Izzo, L. (9)
Hirano, T (9)
Sánchez-Ramírez, R. (9)
Gandolfi, D. (9)
Wiebe, Thomas (9)
Gudmundsdottir, Thor ... (9)
Barragán, O. (9)
Grziwa, S. (9)
Prieto-Arranz, J. (9)
Kremer, Leontien C.M ... (9)
visa färre...
Lärosäte
Stockholms universitet (48)
Karolinska Institutet (45)
Lunds universitet (43)
Uppsala universitet (21)
Chalmers tekniska högskola (21)
Göteborgs universitet (13)
visa fler...
Linköpings universitet (12)
Kungliga Tekniska Högskolan (11)
Umeå universitet (6)
Örebro universitet (1)
Malmö universitet (1)
Handelshögskolan i Stockholm (1)
Södertörns högskola (1)
Linnéuniversitetet (1)
RISE (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (174)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (71)
Medicin och hälsovetenskap (54)
Samhällsvetenskap (3)
Lantbruksvetenskap (2)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy