SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hoang Si Hong) "

Sökning: WFRF:(Hoang Si Hong)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kinyoki, DK, et al. (författare)
  • Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017
  • 2020
  • Ingår i: Nature medicine. - : Springer Science and Business Media LLC. - 1546-170X .- 1078-8956. ; 26:5, s. 750-759
  • Tidskriftsartikel (refereegranskat)abstract
    • A double burden of malnutrition occurs when individuals, household members or communities experience both undernutrition and overweight. Here, we show geospatial estimates of overweight and wasting prevalence among children under 5 years of age in 105 low- and middle-income countries (LMICs) from 2000 to 2017 and aggregate these to policy-relevant administrative units. Wasting decreased overall across LMICs between 2000 and 2017, from 8.4% (62.3 (55.1–70.8) million) to 6.4% (58.3 (47.6–70.7) million), but is predicted to remain above the World Health Organization’s Global Nutrition Target of <5% in over half of LMICs by 2025. Prevalence of overweight increased from 5.2% (30 (22.8–38.5) million) in 2000 to 6.0% (55.5 (44.8–67.9) million) children aged under 5 years in 2017. Areas most affected by double burden of malnutrition were located in Indonesia, Thailand, southeastern China, Botswana, Cameroon and central Nigeria. Our estimates provide a new perspective to researchers, policy makers and public health agencies in their efforts to address this global childhood syndemic.
  •  
2.
  • Nguyen Van, Toan, et al. (författare)
  • Fabrication of highly sensitive and selective H2 gas sensor based on SnO2 thin film sensitized with microsized Pd islands
  • 2016
  • Ingår i: Journal of Hazardous Materials. - : Elsevier BV. - 0304-3894 .- 1873-3336. ; 301, s. 433-442
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultrasensitive and selective hydrogen gas sensor is vital component in safe use of hydrogen that requires a detection and alarm of leakage. Herein, we fabricated a H2 sensing devices by adopting a simple design of planar–type structure sensor in which the heater, electrode, and sensing layer were patterned on the front side of a silicon wafer. The SnO2 thin film–based sensors that were sensitized with microsized Pd islands were fabricated at a wafer–scale by using a sputtering system combined with micro–electronic techniques. The thicknesses of SnO2 thin film and microsized Pd islands were optimized to maximize the sensing performance of the devices. The optimized sensor could be used for monitoring hydrogen gas at low concentrations of 25–250 ppm, with a linear dependence to H2 concentration and a fast response and recovery time. The sensor also showed excellent selectivity for monitoring H2 among other gases, such as CO, NH3, and LPG, and satisfactory characteristics for ensuring safety in handling hydrogen. The hydrogen sensing characteristics of the sensors sensitized with Pt and Au islands were also studied to clarify the sensing mechanisms.
  •  
3.
  • Nguyet, To Thi, et al. (författare)
  • Enhanced response characteristics of NO2 gas sensor based on ultrathin SnS2 nanoplates : Experimental and DFT study
  • 2024
  • Ingår i: Sensors and Actuators A-Physical. - : Elsevier. - 0924-4247 .- 1873-3069. ; 373
  • Tidskriftsartikel (refereegranskat)abstract
    • Layered-metal dichalcogenides with extraordinary characteristics of vast surface area, tunable bandgap and superior adsorption capability enable the potential for application in gas sensors. However, the synthesis of effective material for enhanced response performance remains a challenge. Herein, we exploited a fascinating sensitivity and selectivity towards NO2 gas detection using SnS2 nanoflakes prepared via the hydrothermal method. SnS2 nanoflakes with a thickness of 25 nm and an average diameter of approximately 500 nm show the potential for the detection of NO2 gas at low concentrations of ppb levels. The sensing properties of the SnS2 sensors were investigated for different concentrations of NO2 at various operating temperatures. The sensor exhibits the highest gas-sensing response of 161 at 250 οC upon exposure to 5 ppm of NO2 gas with fast response and recovery times. In addition, the sensor shows excellent selectivity with a low detection limit of ppb level. The electronic structure and gas-sensing mechanism are elucidated via finding density of states, charge density, and band structure based on DFT study which is calculated by the Vienna ab-initio simulation package (VASP). The considerable small adsorption energy reveals a physisorption of the NO2 molecules on the SnS2 surface (-0.174 eV), indicating the SnS2 nanoflakes are intriguing candidates for the speedy detection of NO2 gas.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy