SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hodapp Dorothee) "

Sökning: WFRF:(Hodapp Dorothee)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Clark, Adam Thomas, et al. (författare)
  • General statistical scaling laws for stability in ecological systems
  • 2021
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 24:7, s. 1474-1486
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecological stability refers to a family of concepts used to describe how systems of interacting species vary through time and respond to disturbances. Because observed ecological stability depends on sampling scales and environmental context, it is notoriously difficult to compare measurements across sites and systems. Here, we apply stochastic dynamical systems theory to derive general statistical scaling relationships across time, space, and ecological level of organisation for three fundamental stability aspects: resilience, resistance, and invariance. These relationships can be calibrated using random or representative samples measured at individual scales, and projected to predict average stability at other scales across a wide range of contexts. Moreover deviations between observed vs. extrapolated scaling relationships can reveal information about unobserved heterogeneity across time, space, or species. We anticipate that these methods will be useful for cross-study synthesis of stability data, extrapolating measurements to unobserved scales, and identifying underlying causes and consequences of heterogeneity.
  •  
2.
  • Donadi, Serena, et al. (författare)
  • The body-size structure of macrobenthos changes predictably along gradients of hydrodynamic stress and organic enrichment
  • 2015
  • Ingår i: Marine Biology. - : Springer Science and Business Media LLC. - 0025-3162 .- 1432-1793. ; 162:3, s. 675-685
  • Tidskriftsartikel (refereegranskat)abstract
    • Body size is related to an extensive number of species traits and ecological processes and has therefore been suggested as an effective metric to assess community changes and ecosystem's state. However, the applicability of body size as an ecological indicator in benthic environments has been hindered by the poor knowledge of the factors influencing the size spectra of organisms. By applying biological trait analysis (BTA) and generalized linear models to a species dataset collected in the German Wadden Sea (53A degrees 41'14'' N, 7A degrees 14'19'' E) between 1999 and 2012, we show that the size structure of the macrobenthic community changes predictably along environmental gradients. Specifically, body size increases with increasing current-induced shear stress and sediment organic matter content. In addition, the presence of oyster-mussel reefs in one of the sampling stations enhanced the survival of species belonging to the smallest size categories in habitats with high hydrodynamic energy. This was probably due to the local sheltering effects, which together with biodeposition also increased organic matter in the sediment, likely favoring large deposit feeders as well. Our results suggest that body size can be a useful trait for estimating effects of anthropogenic stressors, such as organic enrichment or alteration of hydrodynamic regime and could therefore be effectively included in current monitoring programs of intertidal macrobenthic communities.
  •  
3.
  • Rahlff, Janina, et al. (författare)
  • High wind speeds prevent formation of a distinct bacterioneuston community in the sea-surface microlayer
  • 2017
  • Ingår i: FEMS Microbiology Ecology. - : Oxford University Press. - 0168-6496 .- 1574-6941. ; 93:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The sea-surface microlayer (SML) at the boundary between atmosphere and hydrosphere represents a demanding habitat for bacteria. Wind speed is a crucial but poorly studied factor for its physical integrity. Increasing atmospheric burden of CO2, as suggested for future climate scenarios, may particularly act on this habitat at the air–sea interface. We investigated the effect of increasing wind speeds and different pCO2 levels on SML microbial communities in a wind-wave tunnel, which offered the advantage of low spatial and temporal variability. We found that enrichment of bacteria in the SML occurred solely at a U10 wind speed of ≤5.6 m s−1 in the tunnel and ≤4.1 m s−1 in the Baltic Sea. High pCO2 levels further intensified the bacterial enrichment in the SML during low wind speed. In addition, low wind speed and pCO2 induced the formation of a distinctive bacterial community as revealed by 16S rRNA gene fingerprints and influenced the presence or absence of individual taxonomic units within the SML. We conclude that physical stability of the SML below a system-specific wind speed threshold induces specific bacterial communities in the SML entailing strong implications for ecosystem functioning by wind-driven impacts on habitat properties, gas exchange and matter cycling processes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy