SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hodges J.T.) "

Sökning: WFRF:(Hodges J.T.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gordon, I.E., et al. (författare)
  • The HITRAN2020 molecular spectroscopic database
  • 2022
  • Ingår i: Journal of Quantitative Spectroscopy and Radiative Transfer. - : Elsevier. - 0022-4073 .- 1879-1352. ; 277
  • Tidskriftsartikel (refereegranskat)abstract
    • The HITRAN database is a compilation of molecular spectroscopic parameters. It was established in the early 1970s and is used by various computer codes to predict and simulate the transmission and emission of light in gaseous media (with an emphasis on terrestrial and planetary atmospheres). The HITRAN compilation is composed of five major components: the line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, experimental infrared absorption cross-sections (for molecules where it is not yet feasible for representation in a line-by-line form), collision-induced absorption data, aerosol indices of refraction, and general tables (including partition sums) that apply globally to the data. This paper describes the contents of the 2020 quadrennial edition of HITRAN. The HITRAN2020 edition takes advantage of recent experimental and theoretical data that were meticulously validated, in particular, against laboratory and atmospheric spectra. The new edition replaces the previous HITRAN edition of 2016 (including its updates during the intervening years). All five components of HITRAN have undergone major updates. In particular, the extent of the updates in the HITRAN2020 edition range from updating a few lines of specific molecules to complete replacements of the lists, and also the introduction of additional isotopologues and new (to HITRAN) molecules: SO, CH3F, GeH4, CS2, CH3I and NF3. Many new vibrational bands were added, extending the spectral coverage and completeness of the line lists. Also, the accuracy of the parameters for major atmospheric absorbers has been increased substantially, often featuring sub-percent uncertainties. Broadening parameters associated with the ambient pressure of water vapor were introduced to HITRAN for the first time and are now available for several molecules. The HITRAN2020 edition continues to take advantage of the relational structure and efficient interface available at www.hitran.org and the HITRAN Application Programming Interface (HAPI). The functionality of both tools has been extended for the new edition.
  •  
2.
  • Hartmann, J. -M., et al. (författare)
  • Collisional broadening and spectral shapes of absorption lines of free and nanopore-confined O-2 gas
  • 2013
  • Ingår i: Physical Review A (Atomic, Molecular and Optical Physics). - 1050-2947. ; 87:3
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents fully ab initio calculations of the broadenings and spectral shapes of O-2 infrared absorption lines in a free gas and when confined in nanoporous media. These calculations are performed, without use of any adjusted parameter, using a recently proposed approach [Phys. Rev. A 87, 013403 (2013)] that is based on requantized classical molecular-dynamics simulations. This involves studying the time evolutions of the translational and rotational motions of large numbers of molecules taking molecule-molecule and molecule-surface collisions into account through realistic interaction potentials. These simulations enable predictions of dipole autocorrelation functions whose Fourier-Laplace transforms yield the associated spectra. Comparisons are then made with broadening coefficients and line shapes provided by new and previous experiments. The good agreement between calculated and measured results confirms the veracity of the proposed model for a free gas and shows that the effects of confinement, which induce significant modifications to the line shapes, are correctly predicted. The need for improved characterization of the shape and size of pores in random nanoporous media is highlighted. DOI: 10.1103/PhysRevA.87.032510
  •  
3.
  • Langerak, A. W., et al. (författare)
  • EuroClonality/BIOMED-2 guidelines for interpretation and reporting of Ig/TCR clonality testing in suspected lymphoproliferations
  • 2012
  • Ingår i: Leukemia. - : Springer Science and Business Media LLC. - 0887-6924 .- 1476-5551. ; 26:10, s. 2159-2171
  • Forskningsöversikt (refereegranskat)abstract
    • PCR-based immunoglobulin (Ig)/T-cell receptor (TCR) clonality testing in suspected lymphoproliferations has largely been standardized and has consequently become technically feasible in a routine diagnostic setting. Standardization of the pre-analytical and post-analytical phases is now essential to prevent misinterpretation and incorrect conclusions derived from clonality data. As clonality testing is not a quantitative assay, but rather concerns recognition of molecular patterns, guidelines for reliable interpretation and reporting are mandatory. Here, the EuroClonality (BIOMED-2) consortium summarizes important pre- and post-analytical aspects of clonality testing, provides guidelines for interpretation of clonality testing results, and presents a uniform way to report the results of the Ig/TCR assays. Starting from an immunobiological concept, two levels to report Ig/TCR profiles are discerned: the technical description of individual (multiplex) PCR reactions and the overall molecular conclusion for B and T cells. Collectively, the EuroClonality (BIOMED-2) guidelines and consensus reporting system should help to improve the general performance level of clonality assessment and interpretation, which will directly impact on routine clinical management (standardized best-practice) in patients with suspected lymphoproliferations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy