SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hoeks F.) "

Sökning: WFRF:(Hoeks F.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Enfors, Sven-Olof, et al. (författare)
  • Physiological responses to mixing in large scale bioreactors
  • 2001
  • Ingår i: Journal of Biotechnology. - 0168-1656 .- 1873-4863. ; 85:2, s. 175-185
  • Tidskriftsartikel (refereegranskat)abstract
    • Escherichia coli fed-batch cultivations at 22 m(3) scale were compared to corresponding laboratory scale processes and cultivations using a scale-down reactor furnished with a high-glucose concentration zone to mimic the conditions in a feed zone of the large bioreactor. Formate accumulated in the large reactor, indicating the existence of oxygen limitation zones. It is suggested that the reduced biomass yield at large scale partly is due to repeated production/reassimilation of acetate from overflow metabolism and mixed acid fermentation products due to local moving zones with oxygen limitation. The conditions that generated mixed-acid fermentation in the scale-down reactor also induced a number of stress responses, monitored by analysis of mRNA of selected stress induced genes. The stress responses were relaxed when the cells returned to the substrate limited and oxygen sufficient compartment of the reactor. Corresponding analysis in the large reactor showed that the concentration of mRNA of four stress induced genes was lowest at the sampling port most distant from the feed zone. It is assumed that repeated induction/relaxation of stress responses in a large bioreactor may contribute to altered physiological properties of the cells grown in large-scale bioreactor. Flow cytometric analysis revealed reduced damage with respect to cytoplasmic membrane potential and integrity in cells grown in the dynamic environments of the large scale reactor and the scale-down reactor.
  •  
3.
  • Goncalves, F. Bastos, et al. (författare)
  • Early sac shrinkage predicts a low risk of late complications after endovascular aortic aneurysm repair
  • 2014
  • Ingår i: British Journal of Surgery. - : Oxford University Press (OUP). - 0007-1323 .- 1365-2168. ; 101:7, s. 802-810
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Aneurysm shrinkage has been proposed as a marker of successful endovascular aneurysm repair (EVAR). Patients with early postoperative shrinkage may experience fewer subsequent complications, and consequently require less intensive surveillance. Methods: Patients undergoing EVAR from 2000 to 2011 at three vascular centres (in 2 countries), who had two imaging examinations (postoperative and after 6-18 months), were included. Maximum diameter, complications and secondary interventions during follow-up were registered. Patients were categorized according to early sac dynamics. The primary endpoint was freedom from late complications. Secondary endpoints were freedom from secondary intervention, postimplant rupture and direct (type I/III) endoleaks. Results: Some 597 EVARs (71.1 per cent of all EVARs) were included. No shrinkage was observed in 284 patients (47.6 per cent), moderate shrinkage (5-9mm) in 142 (23.8 per cent) and major shrinkage (at least 10mm) in 171 patients (28.6 per cent). Four years after the index imaging, the rate of freedom from complications was 84.3 (95 per cent confidence interval 78.7 to 89.8), 88.1 (80.6 to 95.5) and 94.4 (90.1 to 98.7) per cent respectively. No shrinkage was an independent risk factor for late complications compared with major shrinkage (hazard ratio (HR) 3.11; P < 0.001). Moderate compared with major shrinkage (HR 2.10; P = 0.022), early postoperative complications (HR 3.34; P < 0.001) and increasing abdominal aortic aneurysm baseline diameter (HR 1.02; P = 0.001) were also risk factors for late complications. Freedom from secondary interventions and direct endoleaks was greater for patients with major sac shrinkage. Conclusion: Early change in aneurysm sac diameter is a strong predictor of late complications after EVAR. Patients with major sac shrinkage have a very low risk of complications for up to 5 years. This parameter may be used to tailor postoperative surveillance.
  •  
4.
  • Hoeks, Selwyn, et al. (författare)
  • Shifts in ecosystem equilibria following trophic rewilding
  • 2023
  • Ingår i: Diversity and Distributions. - 1366-9516 .- 1472-4642. ; 29:12, s. 1512-1526
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Trophic rewilding is proposed as an approach to tackle biodiversity loss by restoring ecosystem dynamics through the reintroduction of keystone species. Currently, evidence on the ecological consequences of reintroduction programmes is sparse and difficult to generalize. To better understand the ecological consequences of trophic rewilding, we simulated the extinction and reintroduction of large-bodied mammals under different environmental conditions. Location: Europe. Methods: We selected four locations varying in productivity and seasonality in Europe and used a general ecosystem model called Madingley to run simulations. We initialized the model using body mass limits of a European Holocene baseline; we then removed large mammals and let the model converge to a new equilibrium. Next, we reintroduced the previously removed groups to assess whether the equilibrium would shift back to the initial condition. We tested three different reintroduction scenarios, in order to disentangle the importance of the different large mammal groups. Results: The removal of large-bodied mammals led to cascading effects, mainly resulting in increases in smaller-bodied herbivores and the release of mesopredators. Post-reintroduction, the system's new equilibrium state was closer to the initial equilibrium for stable and productive locations compared to highly seasonal and low-productive locations. The maximum trait space volume of the initial state and the post-reintroduction state varied by 9.1% on average over all locations, with an average decrease in trait combinations of 6.6%. The body mass distribution differed by 28%, comparing the initial state to the post-reintroduction state. Main Conclusions: Our simulation results suggest that reintroducing locally extinct large-bodied mammals can broadly restore shifts in ecosystem structure, roughly resembling the baseline ecosystem conditions. However, the extent to which the ecosystem's state resembles the original ecosystem is largely dependent on the reintroduction strategy (only herbivores and omnivores vs. also carnivores) and timing, as well as local environmental conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy