SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hoetzinger Matthias) "

Sökning: WFRF:(Hoetzinger Matthias)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Rahlff, Janina, et al. (författare)
  • Ecogenomics and cultivation reveal distinctive viral-bacterial communities in the surface microlayer of a Baltic Sea slick
  • 2023
  • Ingår i: ISME Communications. - : Springer Nature. - 2730-6151. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Visible surface films, termed slicks, can extensively cover freshwater and marine ecosystems, with coastal regions being particularly susceptible to their presence. The sea-surface microlayer (SML), the upper 1-mm at the air-water interface in slicks (herein slick SML) harbors a distinctive bacterial community, but generally little is known about SML viruses. Using flow cytometry, metagenomics, and cultivation, we characterized viruses and bacteria in a brackish slick SML in comparison to non-slick SML as well as seawater below slick and non-slick areas (subsurface water = SSW). Size-fractionated filtration of all samples distinguished viral attachment to hosts and particles. The slick SML contained higher abundances of virus-like particles, prokaryotic cells, and dissolved organic carbon compared to non-slick SML and SSW. The community of 428 viral operational taxonomic units (vOTUs), 426 predicted as lytic, distinctly differed across all size fractions in the slick SML compared to non-slick SML and SSW. Specific metabolic profiles of bacterial metagenome-assembled genomes and isolates in the slick SML included a prevalence of genes encoding motility and carbohydrate-active enzymes (CAZymes). Several vOTUs were enriched in slick SML, and many virus variants were associated with particles. Nine vOTUs were only found in slick SML, six of them being targeted by slick SML-specific clustered-regularly interspaced short palindromic repeats (CRISPR) spacers likely originating from Gammaproteobacteria. Moreover, isolation of three previously unknown lytic phages for Alishewanella sp. and Pseudoalteromonas tunicata, abundant and actively replicating slick SML bacteria, suggests that viral activity in slicks contributes to biogeochemical cycling in coastal ecosystems.
  •  
2.
  • Rahlff, Janina, et al. (författare)
  • Ecogenomics reveals distinctive viral-bacterial communities in the surface microlayer of a natural surface slick
  • 2024
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Visible surface films, termed slicks, can extensively cover the sea surface, particularly in coastal regions. The sea-surface microlayer (SML), the upper 1-mm at the air-water interface in slicks (slick SML) harbors a distinctive bacterial community, but little is known about SML viruses. Using flow cytometry, metagenomics, and cultivation, we investigated viruses and the bacterial community from a brackish slick SML in comparison to non-slick SML as well as the seawater below (SSW). We conducted size-fractionated filtration of all samples to distinguish viral attachment to hosts and particles. The slick SML contained higher abundances of virus-like particles, prokaryotic cells, and dissolved organic carbon compared to non-slick SML and SSW. The community of 428 viral operational taxonomic units (vOTUs), 426 predicted as lytic, distinctly differed across all size fractions in the slick SML compared to non-slick SML and SSW. The distinctness was underlined by specific metabolic profiles of bacterial metagenome assembled genomes and isolates, which revealed prevalence of motility genes and diversity of CAZymes in the slick SML. Despite overall lower diversity, several vOTUs were enriched in slick SML over slick SSW. Nine vOTUs were only found in slick SML and six of them were targeted by slick SML-specific CRISPR spacers likely originating from Gammaproteobacteria. Moreover, isolation of three previously unknown lytic phages for Alishewanella sp. and Pseudoalteromonas tunicata, representing abundant and actively replicating slick SML bacteria, suggests that viral activity in slicks can contribute to biogeochemical cycling in coastal ecosystems.
  •  
3.
  • Cui, Liang, et al. (författare)
  • Four additional natural 7-deazaguanine derivatives in phages and how to make them
  • 2023
  • Ingår i: Nucleic Acids Research. - : Oxford University Press. - 0305-1048 .- 1362-4962. ; 51:17, s. 9214-9226
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacteriophages and bacteria are engaged in a constant arms race, continually evolving new molecular tools to survive one another. To protect their genomic DNA from restriction enzymes, the most common bacterial defence systems, double-stranded DNA phages have evolved complex modifications that affect all four bases. This study focuses on modifications at position 7 of guanines. Eight derivatives of 7-deazaguanines were identified, including four previously unknown ones: 2 & PRIME;-deoxy-7-(methylamino)methyl-7-deazaguanine (mdPreQ(1)), 2 & PRIME;-deoxy-7-(formylamino)methyl-7-deazaguanine (fdPreQ(1)), 2 & PRIME;-deoxy-7-deazaguanine (dDG) and 2 & PRIME;-deoxy-7-carboxy-7-deazaguanine (dCDG). These modifications are inserted in DNA by a guanine transglycosylase named DpdA. Three subfamilies of DpdA had been previously characterized: bDpdA, DpdA1, and DpdA2. Two additional subfamilies were identified in this work: DpdA3, which allows for complete replacement of the guanines, and DpdA4, which is specific to archaeal viruses. Transglycosylases have now been identified in all phages and viruses carrying 7-deazaguanine modifications, indicating that the insertion of these modifications is a post-replication event. Three enzymes were predicted to be involved in the biosynthesis of these newly identified DNA modifications: 7-carboxy-7-deazaguanine decarboxylase (DpdL), dPreQ(1) formyltransferase (DpdN) and dPreQ(1) methyltransferase (DpdM), which was experimentally validated and harbors a unique fold not previously observed for nucleic acid methylases.
  •  
4.
  • Nilsson, Emelie, et al. (författare)
  • Nutrient driven transcriptional changes during phage infection in an aquatic Gammaproteobacterium
  • 2022
  • Ingår i: Environmental Microbiology. - : John Wiley & Sons. - 1462-2912 .- 1462-2920. ; 24:5, s. 2270-2281
  • Tidskriftsartikel (refereegranskat)abstract
    • Phages modulate bacterial metabolism during infection by regulating gene expression, which influences aquatic nutrient cycling. However, the effects of shifting nutrient regimes are less understood. Here, we analyzed transcriptomes of an ecologically relevant Gammaproteobacterium and its lytic phage in high (HNM) and low (LNM) nutrient medium. Despite different infection characteristics, including reduced burst size and longer latent period in LNM, the phage had a fixed expression profile. Bacterial transcription was instead different depending on nutrient regime, with HNM bacteria focusing on growth while LNM bacteria focused on motility and membrane transport. Additionally, phage infection had a larger effect on bacterial gene expression in LNM compared to HNM, e.g. suppressing increased iron uptake and altering expression of phosphorus uptake genes. Overall, phage infection influenced host metabolism more in LNM, which was more similar to natural conditions, emphasizing the importance of considering natural conditions to understand phage and host ecology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy