SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hoffmann Roald) "

Sökning: WFRF:(Hoffmann Roald)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cammi, Roberto, et al. (författare)
  • Varying Electronic Configurations in Compressed Atoms: From the Role of the Spatial Extension of Atomic Orbitals to the Change of Electronic Configuration as an Isobaric Transformation
  • 2020
  • Ingår i: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9626 .- 1549-9618. ; 16:8, s. 5047-5056
  • Tidskriftsartikel (refereegranskat)abstract
    • A quantum chemical model for the study of the electronic structure of compressed atoms lends itself to a perturbation-theoretic analysis. It is shown, both analytically and numerically, that the increase of the electronic energy with increasing compression depends on the electronic configuration, as a result of the variable spatial extent of the atomic orbitals involved. The different destabilization of the electronic states may lead to an isobaric change of the ground-state electronic configuration, and the same first-order model paves the way to a simple thermodynamical interpretation of this process.
  •  
2.
  •  
3.
  • Rahm, Martin, 1982, et al. (författare)
  • Atomic and Ionic Radii of Elements 1-96
  • 2016
  • Ingår i: Chemistry - A European Journal. - : Wiley. - 1521-3765 .- 0947-6539. ; 22, s. 14625-14632
  • Tidskriftsartikel (refereegranskat)abstract
    • Atomic and cationic radii have been calculated for the first 96 elements, together with selected anionic radii. The metric adopted is the average distance from the nucleus where the electron density falls to 0.001 electrons per bohr3, following earlier work by Boyd. Our radii are derived using relativistic all-electron density functional theory calculations, close to the basis set limit. They offer a systematic quantitative measure of the sizes of non-interacting atoms, commonly invoked in the rationalization of chemical bonding, structure, and different properties. Remarkably, the atomic radii as defined in this way correlate well with van der Waals radii derived from crystal structures. A rationalization for trends and exceptions in those correlations is provided.
  •  
4.
  • Rahm, Martin, 1982, et al. (författare)
  • Distinguishing Bonds
  • 2016
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 1520-5126 .- 0002-7863. ; 138:11, s. 3731-3744
  • Tidskriftsartikel (refereegranskat)abstract
    • The energy change per electron in a chemical or physical transformation, ΔE/n, may be expressed as Δχ̅ + Δ(VNN + ω)/n, where Δχ̅ is the average electron binding energy, a generalized electronegativity, ΔVNN is the change in nuclear repulsions, and Δω is the change in multielectron interactions in the process considered. The last term can be obtained by the difference from experimental or theoretical estimates of the first terms. Previously obtained consequences of this energy partitioning are extended here to a different analysis of bonding in a great variety of diatomics, including more or less polar ones. Arguments are presented for associating the average change in electron binding energy with covalence, and the change in multielectron interactions with electron transfer, either to, out, or within a molecule. A new descriptor Q, essentially the scaled difference between the Δχ̅ and Δ(VNN + ω)/n terms, when plotted versus the bond energy, separates nicely a wide variety of bonding types, covalent, covalent but more correlated, polar and increasingly ionic, metallogenic, electrostatic, charge-shift bonds, and dispersion interactions. Also, Q itself shows a set of interesting relations with the correlation energy of a bond.
  •  
5.
  •  
6.
  •  
7.
  • Rahm, Martin, 1982, et al. (författare)
  • Electronegativity Seen as the Ground-State Average Valence Electron Binding Energy
  • 2019
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 1520-5126 .- 0002-7863. ; 141:1, s. 342-351
  • Tidskriftsartikel (refereegranskat)abstract
    • We introduce a new electronegativity scale for atoms, based consistently on ground-state energies of valence electrons. The scale is closely related to (yet different from) L. C. Allen's, which is based on configuration energies. Using a combination of literature experimental values for ground-state energies and ab initio-calculated energies where experimental data are missing, we are able to provide electronegativities for elements 1-96. The values are slightly smaller than Allen's original scale, but correlate well with Allen's and others. Outliers in agreement with other scales are oxygen and fluorine, now somewhat less electronegative, but in better agreement with their chemistry with the noble gas elements. Group 11 and 12 electronegativities emerge as high, although Au less so than in other scales. Our scale also gives relatively high electronegativities for Mn, Co, Ni, Zn, Tc, Cd, Hg (affected by choice of valence state), and Gd. The new electronegativities provide hints for new alloy/compound design, and a framework is in place to analyze those energy changes in reactions in which electronegativity changes may not be controlling.
  •  
8.
  • Rahm, Martin, 1982, et al. (författare)
  • Squeezing All Elements in the Periodic Table: Electron Configuration and Electronegativity of the Atoms under Compression
  • 2019
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 1520-5126 .- 0002-7863. ; 141:26, s. 10253-10271
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a quantum mechanical model capable of describing isotropic compression of single atoms in a non-reactive neon-like environment. Studies of 93 atoms predict drastic changes to ground-state electronic configurations and electronegativity in the pressure range of 0-300 GPa. This extension of atomic reference data assists in the working of chemical intuition at extreme pressure and can act as a guide to both experiments and computational efforts. For example, we can speculate on the existence of pressure-induced polarity (red-ox) inversions in various alloys. Our study confirms that the filling of energy levels in compressed atoms more closely follows the hydrogenic aufbau principle, where the ordering is determined by the principal quantum number. In contrast, the Madelung energy ordering rule is not predictive for atoms under compression. Magnetism may increase or decrease with pressure, depending on which atom is considered. However, Hund's rule is never violated for single atoms in the considered pressure range. Important (and understandable) electron shifts, s→p, s→d, s→f, and d→f are essential chemical and physical consequences of compression. Among the specific intriguing changes predicted are an increase in the range between the most and least electronegative elements with compression; a rearrangement of electronegativities of the alkali metals with pressure, with Na becoming the most electropositive s1 element (while Li becomes a p group element and K and heavier become transition metals); phase transitions in Ca, Sr, and Ba correlating well with s→d transitions; spin-reduction in all d-block atoms for which the valence d-shell occupation is dn (4 ≤ n ≤ 8); d→f transitions in Ce, Dy, and Cm causing Ce to become the most electropositive element of the f-block; f→d transitions in Ho, Dy, and Tb and a s→f transition in Pu. At high pressure Sc and Ti become the most electropositive elements, while Ne, He, and F remain the most electronegative ones.
  •  
9.
  •  
10.
  • Rahm, Martin, 1982, et al. (författare)
  • Toward an Experimental Quantum Chemistry: Exploring a New Energy Partitioning
  • 2015
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 1520-5126 .- 0002-7863. ; 137, s. 10282-10291
  • Tidskriftsartikel (refereegranskat)abstract
    • Following the work of L. C. Allen, this work begins by relating the central chem. concept of electronegativity with the av. binding energy of electrons in a system. The av. electron binding energy, ̅χ, is in principle accessible from expt., through photoelectron and X-ray spectroscopy. It can also be estd. theor. ̅χ has a rigorous and understandable connection to the total energy. That connection defines a new kind of energy decompn. scheme. The changing total energy in a reaction has three primary contributions to it: the av. electron binding energy, the nuclear-nuclear repulsion, and multielectron interactions. This partitioning allows one to gain insight into the predominant factors behind a particular energetic preference. We can conclude whether an energy change in a transformation is favored or resisted by collective changes to the binding energy of electrons, the movement of nuclei, or multielectron interactions. For example, in the classical formation of H2 from atoms, orbital interactions dominate nearly canceling nuclear-nuclear repulsion and two-electron interactions. While in electron attachment to an H atom, the multielectron interactions drive the reaction. Looking at the balance of av. electron binding energy, multielectron, and nuclear-nuclear contributions one can judge when more traditional electronegativity arguments can be justifiably invoked in the rationalization of a particular chem. event. [on SciFinder(R)]
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy