SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hofmann Hilmar) "

Sökning: WFRF:(Hofmann Hilmar)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chmiel, Hannah E., 1983-, et al. (författare)
  • Where does the river end? : Drivers of spatiotemporal variability in CO2 concentration and flux in the inflow area of a large boreal lake
  • 2020
  • Ingår i: Limnology and Oceanography. - : Wiley. - 0024-3590 .- 1939-5590. ; 65:6, s. 1161-1174
  • Tidskriftsartikel (refereegranskat)abstract
    • River inflow affects the spatiotemporal variability of carbon dioxide (CO2) in the water column of lakes and may locally influence CO2 gas exchange with the atmosphere. However, spatiotemporal CO2 variability at river inflow sites is often unknown leaving estimates of lake‐wide CO2 emission uncertain. Here, we investigated the CO2 concentration and flux variability along a river‐impacted bay and remote sampling locations of Lake Onego. During 3 years, we resolved spatial CO2 gradients between river inflow and central lake and recorded the temporal course of CO2 in the bay from the ice‐covered period to early summer. We found that the river had a major influence on the spatial CO2 variability during ice‐covered periods and contributed ~ 35% to the total amount of CO2 in the bay. The bay was a source of CO2 to the atmosphere at ice‐melt each year emitting 2–15 times the amount as an equally sized area in the central lake. However, there was large interannual variability in the spring CO2 emission from the bay related to differences in discharge and climate that affected the hydrodynamic development of the lake during spring. In early summer, the spatial CO2 variability was unrelated to the river signal but correlated negatively with dissolved oxygen concentrations instead indicating a stronger biological control on CO2. Our study reveals a large variability of CO2 and its drivers at river inflow sites at the seasonal and at the interannual time scale. Understanding these dynamics is essential for predicting lake‐wide CO2 fluxes more accurately under a warming climate.
  •  
2.
  • Pasche, Natacha, et al. (författare)
  • Implications of river intrusion and convective mixing on the spatial and temporal variability of under-ice CO2
  • 2019
  • Ingår i: Inland Waters. - : Informa UK Limited. - 2044-2041 .- 2044-205X. ; 9:2, s. 162-176
  • Tidskriftsartikel (refereegranskat)abstract
    • Ice-covered periods might significantly contribute to lake emissions at ice-melt, yet a comprehensive understanding of under-ice carbon dioxide (CO2) dynamics is still lacking. This study investigated the processes driving spatiotemporal patterns of under-ice CO2 in large Lake Onego. In March 2015 and 2016, under-ice CO2, dissolved inorganic carbon (DIC), and dissolved organic carbon (DOC) distributions were measured along a river to an open-lake transect. CO2 decreased from 120/129 μmol L−1 in the river to 51/98 μmol L−1 in the bay, and 34/36 μmol L−1 in the open lake, while DOC decreased from 1.18/1.55 mmol L−1 in the river to 0.67/1.04 mmol L−1 in the bay in 2015 and 2016, respectively. These decreases in concentrations with increasing distance from the river mouth indicate that river discharge modulates spatial patterns of under-ice CO2. The variability between the 2 years was mainly driven by river discharge and ice transparency affecting the extent of under-ice convection. Higher discharge during winter 2016 resulted in higher CO2 concentrations in the bay. By contrast, intensive under-ice convection led to lower, more homogeneously distributed CO2 in 2015. In conclusion, the river-to-bay transition zone is characterized by strong CO2 variability and is therefore an important zone to consider when assessing the CO2 budget of large lakes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy