SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hofverberg Petter) "

Sökning: WFRF:(Hofverberg Petter)

  • Resultat 1-10 av 40
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adriani, O., et al. (författare)
  • A statistical procedure for the identification of positrons in the PAMELA experiment
  • 2010
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 34:1, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • The PAMELA satellite experiment has measured the cosmic-ray positron fraction between 1.5 GeV and 100 GeV. The need to reliably discriminate between the positron signal and proton background has required the development of an ad hoc analysis procedure. In this paper, a method for positron identification is described and its stability and capability to yield a correct background estimate is shown. The analysis includes new experimental data, the application of three different fitting techniques for the background sample and an estimate of systematic uncertainties due to possible inaccuracies in the background selection. The new experimental results confirm both solar modulation effects on cosmic-rays with low rigidities and an anomalous positron abundance above 10 GeV. (c) 2010 Elsevier B.V. All rights reserved.
  •  
2.
  • Adriani, O., et al. (författare)
  • An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV
  • 2009
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 458:7238, s. 607-609
  • Tidskriftsartikel (refereegranskat)abstract
    • Antiparticles account for a small fraction of cosmic rays and are known to be produced in interactions between cosmic-ray nuclei and atoms in the interstellar medium(1), which is referred to as a 'secondary source'. Positrons might also originate in objects such as pulsars(2) and microquasars(3) or through dark matter annihilation(4), which would be 'primary sources'. Previous statistically limited measurements(5-7) of the ratio of positron and electron fluxes have been interpreted as evidence for a primary source for the positrons, as has an increase in the total electron+positron flux at energies between 300 and 600 GeV (ref. 8). Here we report a measurement of the positron fraction in the energy range 1.5-100 GeV. We find that the positron fraction increases sharply overmuch of that range, in a way that appears to be completely inconsistent with secondary sources. We therefore conclude that a primary source, be it an astrophysical object or dark matter annihilation, is necessary.
  •  
3.
  • Adriani, O., et al. (författare)
  • Measurements of quasi-trapped electron and positron fluxes with PAMELA
  • 2009
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 114, s. A12218-
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents precise measurements of the differential energy spectra of quasi-trapped secondary electrons and positrons and their ratio between 80 MeV and 10 GeV in the near-equatorial region (altitudes between 350 km and 600 km). Latitudinal dependences of the spectra are analyzed in detail. The results were obtained from July until November 2006 onboard the Resurs-DK satellite by the PAMELA spectrometer, a general purpose cosmic ray detector system built around a permanent magnet spectrometer and a silicon-tungsten calorimeter.
  •  
4.
  • Adriani, O., et al. (författare)
  • New Measurement of the Antiproton-to-Proton Flux Ratio up to 100 GeV in the Cosmic Radiation
  • 2009
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 102:5
  • Tidskriftsartikel (refereegranskat)abstract
    • A new measurement of the cosmic-ray antiproton-to-proton flux ratio between 1 and 100 GeV is presented. The results were obtained with the PAMELA experiment, which was launched into low-Earth orbit on-board the Resurs-DK1 satellite on June 15th 2006. During 500 days of data collection a total of about 1000 antiprotons have been identified, including 100 above an energy of 20 GeV. The high-energy results are a tenfold improvement in statistics with respect to all previously published data. The data follow the trend expected from secondary production calculations and significantly constrain contributions from exotic sources, e. g., dark matter particle annihilations.
  •  
5.
  • Adriani, O., et al. (författare)
  • PAMELA Results on the Cosmic-Ray Antiproton Flux from 60 MeV to 180 GeV in Kinetic Energy
  • 2010
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 105:12, s. 121101-
  • Tidskriftsartikel (refereegranskat)abstract
    • The satellite-borne experiment PAMELA has been used to make a new measurement of the cosmic-ray antiproton flux and the antiproton-to-proton flux ratio which extends previously published measurements down to 60 MeV and up to 180 GeV in kinetic energy. During 850 days of data acquisition approximately 1500 antiprotons were observed. The measurements are consistent with purely secondary production of antiprotons in the Galaxy. More precise secondary production models are required for a complete interpretation of the results.
  •  
6.
  • Adriani, O., et al. (författare)
  • Positrons and electrons in primary cosmic rays as measured in the PAMELA experiment
  • 2009
  • Ingår i: Bulletin of the Russian Academy of Sciences: Physics. - 1062-8738. ; 73:5, s. 568-570
  • Tidskriftsartikel (refereegranskat)abstract
    • The PAMELA experiment is being carried out on board the Russian satellite Resurs DK1 placed in the near-earth near-polar orbit on June 15, 2006. The apparatus comprising a silicon-strip magnetic spectrometer and an electromagnetic calorimeter allows measurement of electron and positron fluxes in cosmic rays in a wide energy interval from ∼100 MeV to hundreds of GeV. The high-energy electron and positron separation technique is discussed and the data on positron-to-electron ratio in primary cosmic rays up to E ≃ 10 GeV from the 2006 - 2007 measurements are reported in this work.
  •  
7.
  • Adriani, O., et al. (författare)
  • Secondary electron and positron fluxes in the near-Earth space observed in the ARINA and PAMELA experiments
  • 2009
  • Ingår i: Bulletin of the Russian Academy of Sciences: Physics. - 1062-8738. ; 73:3, s. 364-366
  • Tidskriftsartikel (refereegranskat)abstract
    • Secondary electron and positron fluxes in the energy range from 3 MeV to 7 GeV were measured with the ARINA and PAMELA spectrometers onboard the Resurs-DK satellite launched on June 15, 2006 into an elliptical orbit with an inclination of 70.4° and an altitude of 350-600 km. It is shown that positrons dominate over electrons by a factor of up to 4-5 in the geomagnetic equator region (L < 1.2 and B > 0.25).
  •  
8.
  • Adriani, O., et al. (författare)
  • The Pamela experiment ready for flight
  • 2007
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 572:1, s. 471-473
  • Tidskriftsartikel (refereegranskat)abstract
    • The Pamela apparatus will allow precise measurements of cosmic rays in Low Earth Orbit, mainly focusing on the antiparticles component. The apparatus is now ready for flight, and the launch is foreseen during June 2006. The paper briefly reports the status of the experiment, and the performances of the various components as measured before the launch.
  •  
9.
  • Adriani, O., et al. (författare)
  • The PAMELA space mission
  • 2008
  • Ingår i: Astroparticle, Part. Space Phys., Detect. Med. Phys. Appl. - Proc. Conf.. - : WORLD SCIENTIFIC. - 9812819088 - 9789812819086 ; , s. 858-864
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA (a Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics) experiment, is a satellite-borne particle spectrometer. It was launched on 15th June 2006 from the Baikonur cosmodrome in Kazakhstan, is installed into the Russian Resurs-DK1 satellite. PAMELA is composed of a time-of-flight system, a magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail catcher scintillator and a neutron detector. Among the PAMELA major objectives are the study of charged particles in the cosmic radiation, the investigation of the nature of dark matter, by mean of the measure of the cosmic-ray antiproton and positron spectra over the largest energy range ever achieved. PAMELA has been in a nearly continuous data taking mode since llth July 2006. The status of the apparatus and performances will be presented.
  •  
10.
  • Adriani, O., et al. (författare)
  • The PAMELA space mission
  • 2009
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA (a Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics) space mission has been launched on-board the Resurs-DK1 satellite on June 15(th) 2006 from the Baikonur cosmodrome, in Kazakhstan. PAMELA is a particle spectrometer designed to study charged particles in the cosmic radiation with special focus on the investigation of the nature of dark matter, by mean of the measure of the cosmic-ray antiproton and positron spectra over the largest energy range ever achieved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 40

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy