SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hol J) "

Sökning: WFRF:(Hol J)

  • Resultat 1-10 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Escartin, C., et al. (författare)
  • Reactive astrocyte nomenclature, definitions, and future directions
  • 2021
  • Ingår i: Nature Neuroscience. - : Springer Science and Business Media LLC. - 1097-6256 .- 1546-1726. ; 24, s. 312-325
  • Tidskriftsartikel (refereegranskat)abstract
    • Reactive astrocytes are astrocytes undergoing morphological, molecular, and functional remodeling in response to injury, disease, or infection of the CNS. Although this remodeling was first described over a century ago, uncertainties and controversies remain regarding the contribution of reactive astrocytes to CNS diseases, repair, and aging. It is also unclear whether fixed categories of reactive astrocytes exist and, if so, how to identify them. We point out the shortcomings of binary divisions of reactive astrocytes into good-vs-bad, neurotoxic-vs-neuroprotective or A1-vs-A2. We advocate, instead, that research on reactive astrocytes include assessment of multiple molecular and functional parameters-preferably in vivo-plus multivariate statistics and determination of impact on pathological hallmarks in relevant models. These guidelines may spur the discovery of astrocyte-based biomarkers as well as astrocyte-targeting therapies that abrogate detrimental actions of reactive astrocytes, potentiate their neuro- and glioprotective actions, and restore or augment their homeostatic, modulatory, and defensive functions. Good-bad binary classifications fail to describe reactive astrocytes in CNS disorders. Here, 81 researchers reach consensus on widespread misconceptions and provide definitions and recommendations for future research on reactive astrocytes.
  •  
2.
  •  
3.
  •  
4.
  • Klassen, A. F., et al. (författare)
  • FACE-Q craniofacial module: Part 2 Psychometric properties of newly developed scales for children and young adults with facial conditions
  • 2021
  • Ingår i: Journal of Plastic, Reconstructive and Aesthetic Surgery. - : Elsevier BV. - 1748-6815. ; 74:9, s. 2330-2340
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The FACE-Q Craniofacial Module is a patient-reported outcome measure designed for patients aged 8 to 29 years with conditions associated with a facial difference. In part 1, we describe the psychometric findings for the original CLEFT-Q scales tested in patients with cleft and noncleft facial conditions. The aim of this study was to examine psychometric performance of new FACE-Q Craniofacial Module scales. Methods: Data were collected between December 2016 and December 2019 from patients aged 8 to 29 years with conditions associated with a visible or functional facial difference. Rasch measurement theory (RMT) analysis was used to examine psychometric properties of each scale. Scores were transformed from 0 (worst) to 100 (best) for tests of construct validity. Results: 1495 participants were recruited with a broad range of conditions (e.g., birthmarks, facial paralysis, craniosynostosis, craniofacial microsomia, etc.) RMT analysis resulted in the refinement of 7 appearance scales (Birthmark, Cheeks, Chin, Eyes, Forehead, Head Shape, Smile), two function scales (Breathing, Facial), and an Appearance Distress scale. Person separation index and Cronbach alpha values met criteria. Three checklists were also formed (Eye Function, and Eye and Face Adverse Effects). Significantly lower scores on eight of nine scales were reported by participants whose appearance or functional difference was rated as a major rather than minor or no difference. Higher appearance distress correlated with lower appearance scale scores. Conclusion: The FACE-Q Craniofacial Module scales can be used to collect and compare patient reported outcomes data in children and young adults with a facial condition. © 2021
  •  
5.
  • van Dijk, B. J., et al. (författare)
  • Complement C5 Contributes to Brain Injury After Subarachnoid Hemorrhage
  • 2020
  • Ingår i: Translational Stroke Research. - : Springer Science and Business Media LLC. - 1868-4483 .- 1868-601X. ; 11, s. 678-688
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous studies showed that complement activation is associated with poor functional outcome after aneurysmal subarachnoid hemorrhage (SAH). We investigated whether complement activation is underlying brain injury after aneurysmal SAH (n=7) and if it is an appropriate treatment target. We investigated complement expression in brain tissue of aneurysmal SAH patients (n =930) and studied the role of common genetic variants in C3 and C5 genes in outcome. We analyzed plasma levels (n =229) to identify the functionality of a single nucleotide polymorphism (SNP) associated with outcome. The time course of C5a levels was measured in plasma (n =31) and CSF (n =10). In an SAH mouse model, we studied the extent of microglia activation and cell death in wild-type mice, mice lacking the C5a receptor, and in mice treated with C5-specific antibodies (n=15 per group). Brain sections from aneurysmal SAH patients showed increased presence of complement components C1q and C3/C3b/iC3B compared to controls. The complement component 5 (C5) SNP correlated with C5a plasma levels and poor disease outcome. Serial measurements in CSF revealed that C5a was >1400-fold increased 1 day after aneurysmal SAH and then gradually decreased. C5a in plasma was 2-fold increased at days 3–10 after aneurysmal SAH. In the SAH mouse model, we observed a ≈40% reduction in both microglia activation and cell death in mice lacking the C5a receptor, and in mice treated with C5-specific antibodies. These data show that C5 contributes to brain injury after experimental SAH, and support further study of C5-specific antibodies as novel treatment option to reduce brain injury and improve prognosis after aneurysmal SAH.
  •  
6.
  • Maier, Hannes, et al. (författare)
  • Consensus Statement on Bone Conduction Devices and Active Middle Ear Implants in Conductive and Mixed Hearing Loss
  • 2022
  • Ingår i: Otology and Neurotology. - : Lippincott, Williams & Wilkins. - 1531-7129 .- 1537-4505. ; 43:5, s. 513-529
  • Tidskriftsartikel (refereegranskat)abstract
    • Nowadays, several options are available to treat patients with conductive or mixed hearing loss. Whenever surgical intervention is not possible or contra-indicated, and amplification by a conventional hearing device (e.g., behind-the-ear device) is not feasible, then implantable hearing devices are an indispensable next option. Implantable bone-conduction devices and middle-ear implants have advantages but also limitations concerning complexity/invasiveness of the surgery, medical complications, and effectiveness. To counsel the patient, the clinician should have a good overview of the options with regard to safety and reliability as well as unequivocal technical performance data. The present consensus document is the outcome of an extensive iterative process including ENT specialists, audiologists, health-policy scientists, and representatives/technicians of the main companies in this field. This document should provide a first framework for procedures and technical characterization to enhance effective communication between these stakeholders, improving health care.
  •  
7.
  • Sigvant, M., et al. (författare)
  • Friction and lubrication modelling in sheet metal forming simulations of the Volvo XC90 inner door
  • 2016
  • Ingår i: NUMISHEET 2016. - : IOP PUBLISHING LTD.
  • Konferensbidrag (refereegranskat)abstract
    • The quality of sheet metal formed parts is strongly dependent on the friction and lubrication conditions that are acting in the actual production process. Although friction is of key importance, it is currently not considered in detail in stamping simulations. This paper presents project results considering friction and lubrication modelling in stamping simulations of the Volvo XC90 inner door. For this purpose, the TriboForm software is used in combination with the AutoForm software. Validation of the simulation results is performed based on door-inner parts taken from the press line in a full-scale production run. The project results demonstrate the improved prediction accuracy of stamping simulations.
  •  
8.
  • Sigvant, Mats, et al. (författare)
  • Friction in Sheet Metal Forming : Forming Simulations of Dies in Try-Out
  • 2018
  • Ingår i: Journal of Physics. - : Institute of Physics Publishing.
  • Konferensbidrag (refereegranskat)abstract
    • The quality of sheet metal formed parts is strongly dependent on the tribology and friction conditions that are acting in the actual forming process. This paper focuses on the tribology conditions during early try-out of dies for new car models. The motivation for the study is that the majority of the forming simulations at Volvo Cars are performed to secure the die try-out, i.e. solve as many problems as possible in forming simulations before the final design of the die and milling of the casting. In the current study, three closure parts for the new Volvo V60 model have been analysed with both Coulomb and TriboForm friction models. The simulation results from the different friction models are compared using thickness measurements of real parts, and 3D geometry scanning data of the parts. Results show the improved prediction capability of forming simulations when using the TriboForm friction model, demonstrating the ability to accurately describe try-out conditions in sheet metal forming simulations. © 2018 Institute of Physics Publishing. All rights reserved.
  •  
9.
  • Sigvant, Mats, et al. (författare)
  • Friction in Sheet Metal Forming Simulations : Modelling of New Sheet Metal Coatings and Lubricants
  • 2018
  • Ingår i: IOP Conference Series. - : Institute of Physics Publishing.
  • Konferensbidrag (refereegranskat)abstract
    • The quality of sheet metal formed parts is strongly dependent on the tribology and friction conditions that are acting in the actual forming process. These friction conditions are then dependent on the tribology system, i.e. the applied sheet material, coating and tooling material, the lubrication and process conditions. Although friction is of key importance, it is currently not considered in detail in sheet metal forming simulations. The current industrial standard is to use a constant (Coulomb) coefficient of friction, which limits the overall simulation accuracy. Since a few years back there is an ongoing collaboration on friction modelling between Volvo Cars, Tata Steel, TriboForm Engineering, AutoForm Engineering and the University of Twente. In previous papers by the authors, results from lab scale studies and studies of a door-inner part in Volvo Cars production have been presented. This paper focuses on the tribology conditions during early tryout of dies for new car models with an emphasis on the effect of the usage of new steel material coatings and lubricants on forming results. The motivation for the study is that the majority of the forming simulations at Volvo Cars are performed to secure the die tryout, i.e. solve as many problems as possible in forming simulations before the final design of the die and milling of the casting. In the current study, three closure parts for the new Volvo V60 model have been analysed with both Coulomb and TriboForm friction models. The simulation results from the different friction models are compared using thickness measurements of real parts, and 3D geometry scanning data of the parts. Results show the improved prediction accuracy of forming simulations when using the TriboForm friction model, demonstrating the ability to account for the effect of new sheet metal coatings and lubricants in sheet metal forming simulations. © Published under licence by IOP Publishing Ltd.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy