SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Holmboe Michael Universitetslektor) "

Sökning: WFRF:(Holmboe Michael Universitetslektor)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Broman, Karolina, Universitetslektor, 1969-, et al. (författare)
  • Virtual Reality : visualization of chemical structures to enhance student interest and learning
  • 2022
  • Ingår i: ECRICE 2022. - : Weizmann Institute of Science.
  • Konferensbidrag (refereegranskat)abstract
    • One of the fundamental aspects of chemistry learning is to visualize chemical structures. Through the application of Alex Johnstone's (1991) multilevel thought, the submicroscopic level is often a challenge for students, especially the shift between 2D and 3D, i.e., spatial thinking or spatial ability (Harle & Towns, 2011). With small molecules, plastic ball-and-stick models are commonly used, but on university level, the structures are often larger. By applying digital tools and techniques, as Virtual Reality (VR), there are less limitations in size to represent molecules, and even large structures and reaction mechanisms can be explored (Won et al., 2019). In a five-year design-based research project (Anderson & Shattuck, 2012), a collaboration between university chemistry teachers and a chemistry education researcher, has had an aim to develop university chemistry students' spatial thinking.Students and teachers have, in workshops and tutorials, applied VR with both simple and more advanced tools, see figures 1 and 2. Empirical data has been collected using surveys, interviews, and observations. Standard ethical considerations have been considered throughout the whole project.In this presentation, students' cognitive and affective learning related to spatial thinking will be discussed, as well as students', teachers', and researcher’s perspectives from the application of VR to visualize chemistry will be elaborated further. Implications for chemistry teaching at all levels will also be explored.
  •  
2.
  • Broman, Karolina, Universitetslektor, 1969-, et al. (författare)
  • Virtual Reality to visualise chemistry in higher education : Digital tools to enhance student learning
  • 2022
  • Konferensbidrag (refereegranskat)abstract
    • Visualisation of molecular representations is an important area within chemistry education that has been explored for a long time, from several different perspectives. In the 1950s, Linus Pauling and Robert Koltun defined the CPK-model, describing the colours of the different atoms used in wood or plastic ball-and-stick models, for example, the black carbon, the white hydrogen, and the red oxygen. These analogue ball-and-stick models (e.g., MolyMod) are still used both in schools and at universities to help students “see” chemistry in three dimensions (3D). Today, with digitalisation, new tools are available to represent and visualise chemistry(Bernholt, Broman, Siebert, & Parchmann, 2019). With these modern digital tools, there are less limitations in molecular size to represent molecules, and even large structures and reaction mechanisms can be explored (Won, Mocerino, Tang, Treagust, & Tasker, 2019). In our project, interventions applying Virtual Reality (VR) as the digital tool during organic chemistry workshops and tutorials, have been explored related to cognitive and affective learning.VR gives students the possibility to practice spatial ability, i.e., to move between 2D and 3D. In textbooks, chemistry is presented in 2D using, for example, Lewis structures. However, in real life, chemistry is three-dimensional, and the move between 2D and 3D is something students, as novices, need to practice to understand why and how chemicals react. In our project, university students practice their spatial ability through the application of VR. This on-going project started in 2018, and different workshops and tutorials have been implemented in different chemistry courses for bachelor, master, and engineering students. As presented in previous recent research from Brown and colleagues (2021), our students were very positive, enthusiastic and engaged to work with VR to develop their spatial ability and to visualise chemistry. In the presentation, we will give examples on how students can improve their learning and interest with the use of VR to represent chemical structures.
  •  
3.
  • Broman, Karolina, Universitetslektor, 1969-, et al. (författare)
  • Zoom combined with Virtual Reality (VR) to visualize chemical structures inorganic chemistry
  • 2021
  • Ingår i: Universitetspedagogiskakonferensen 2021. - Umeå : Universitetspedagogik och lärandestöd (UPL), Umeå universitet. ; , s. 12-13
  • Konferensbidrag (refereegranskat)abstract
    • The ability to visualize chemistry and to move between two-dimensional (2D) representations presented in textbooks, and three-dimensional (3D) representations of the real molecular structures and mechanisms, is an important competence to master in university chemistry. In research, this is called spatial thinking or spatial ability (Hegarty, 2014). Through spatial thinking, chemists can predict how and why chemical compounds react. Chemistry experts are used to apply this spatial thinking, i.e., visualization through the move between 2D and 3D, without realizing it, whereas novices as students often find spatial thinking or spatial ability challenging (Harle & Towns, 2011). Spatial ability is a competence that is possible to develop through practice (Kozma & Russel, 2005), and in this project, chemistry students had the possibility to use virtual reality, VR, to visualize organic molecular structures and improve their spatial thinking. VR has a potential as a digital learning tool to explore 3D representation  During the last one and a half years, Covid 19 has influenced teaching strategies at universities, and Zoom has become the most common software to teach students. At a first-cycle chemistry course in biological chemistry within a bachelor programme in life science, students were given the opportunity to visualize 3D representations of chemical structures. Due to the Covid 19 restrictions, the teachers could not help students attending the course to be active VR users. Instead, one teacher applied the VR application, Oculus Rift combined with Nanome software (https://nanome.ai), and streamed the visualization over Zoom. The second university chemistry teacher, and the students, used simple VR glasses with their smartphones to visualize the 3D projected molecules, and the teacher explained what was presented. This design-based research project (Anderson & Shattuck, 2012), where the university chemistry teachers collaborated with a chemistry education researcher and a digitalization researcher, will elaborate further on how Zoom as a digital teaching tool also can be applied to facilitate spatial thinking for students even post-Covid. The chemistry teachers and chemistry education researcher designed an intervention from where examples of the visualizations will be presented together with survey results on students’ responses of the application of digital techniques as a way to practice their visualization competence and spatial ability. Preliminary results show that students find this visualization combining VR and Zoom valuable to practice their spatial thinking, and examples of teaching activities will be presented.For more information about the project, see https://www.umu.se/en/feature/vr-glasses-help-students-visualize-molecules-/or https://www.umu.se/reportage/vr-glasogon-hjalper-studenter-visualisera-molekyler/
  •  
4.
  • Lindholm, Jerry, 1991- (författare)
  • Molecular-level controls on water and organics intercalation in layered minerals
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Layered minerals are naturally abundant and often display a large surface area in relation to their weight. For swelling layered minerals, most of this area is contained between the layers in the interlayer space. Their large surface area makes them interesting in many different fields and applications, such as adsorbents, catalysts or as carriers for other particles that can be intercalated and exchanged. In order for the materials to be used effectively, it is hence necessary to have a fundamental understanding of how these processes occur, and ways to predict them.To address adsorption of water, an isotherm model was created to describe the hydration process on layered materials. The model decomposed the process of adsorptions into internal and external, adsorption and condensation, and could specifically handle hydration in the expanding interlayer nanopores. Adsorption and desorption isotherms of two different materials, Montmorillonite and Birnessite was successfully modelled, where the former was ion-exchanged with the counter-cations Li+, Na+, K+, Cs+, Mg2+, Ca2+, Sr2+, Cu2+, whereas the latter contained K+. This indicated that this isotherm model is applicable to also other layered materials. The adsorption process was also characterized experimentally with vibrational spectroscopy (FTIR) and multivariate statistical techniques (MCR), in order to generate spectral- and concentration profiles of the involved components.In order to also investigate adsorption of different organic molecules, the intercalation of alcohols and a cationic surfactant was investigated in separate studies. Clay-water-alcohol systems of eight alcohols were characterized experimentally by XRD as well as by molecular dynamics simulations, using different combinations of classical force fields for the clay (ClayFF, ClayFFMod, INTERFACE) and for the alcohols (CGenFF, GAFF, OPLS). It was found that the optimal force field combination varied with the fitting approach. A brute force sensitivity analysis indicated that the comparison with the experimental XRD data was more dependent on the relative interlayer loading than the positions of the atoms, an important result for future similar benchmarking studies.By intercalating and adsorbing a cationic surfactant (CTAB) to Montmorillonite at increasing concentrations, the effects of solvent polarity and the CTAB interlayer content on the Montmorillonite interlayer swelling was investigated. It was found that moderately polar solvents such as DMSO, in combination with CTAB in a planar bilayer configuration resulted in the greatest adsorption of the lipophilic solute alizarin.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy