SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Holmgren Gustav 1983 ) "

Sökning: WFRF:(Holmgren Gustav 1983 )

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Holmgren, Gustav, 1983-, et al. (författare)
  • Identification of novel biomarkers for doxorubicin-induced toxicity in human cardiomyocytes derived from pluripotent stem cells
  • 2015
  • Ingår i: Toxicology. - : Elsevier. - 0300-483X .- 1879-3185. ; 328, s. 102-111
  • Tidskriftsartikel (refereegranskat)abstract
    • Doxorubicin is a chemotherapeutic agent indicated for the treatment of a variety of cancer types, including leukaemia, lymphomas, and many solid tumours. The use of doxorubicin is, however, associated with severe cardiotoxicity, often resulting in early discontinuation of the treatment. Importantly, the toxic symptoms can occur several years after the termination of the doxorubicin administration. In this study, the toxic effects of doxorubicin exposure have been investigated in cardiomyocytes derived from human embryonic stem cells (hESC). The cells were exposed to different concentrations of doxorubicin for up to 2 days, followed by a 12 day recovery period. Notably, the cell morphology was altered during drug treatment and the cells showed a reduced contractile ability, most prominent at the highest concentration of doxorubicin at the later time points. A general cytotoxic response measured as Lactate dehydrogenase leakage was observed after 2 days' exposure compared to the vehicle control, but this response was absent during the recovery period. A similar dose-dependant pattern was observed for the release of cardiac specific troponin T (cTnT) after 1 day and 2 days of treatment with doxorubicin. Global transcriptional profiles in the cells revealed clusters of genes that were differentially expressed during doxorubicin exposure, a pattern that in some cases was sustained even throughout the recovery period, suggesting that these genes could be used as sensitive biomarkers for doxorubicin-induced toxicity in human cardiomyocytes. The results from this study show that cTnT release can be used as a measurement of acute cardiotoxicity due to doxorubicin. However, for the late onset of doxorubicin-induced cardiomyopathy, cTnT release might not be the most optimal biomarker. As an alternative, some of the genes that we identified as differentially expressed after doxorubicin exposure could serve as more relevant biomarkers, and may also help to explain the cellular mechanisms behind the late onset apoptosis associated with doxorubicin-induced cardiomyopathy.
  •  
2.
  • Holmgren, Gustav, 1983-, et al. (författare)
  • Characterization of Human Induced Pluripotent Stem Cell-Derived Hepatocytes with Mature Features and Potential for Modeling Metabolic Diseases
  • 2020
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 21:2
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a strong anticipated future for human induced pluripotent stem cell-derived hepatocytes (hiPS-HEP), but so far, their use has been limited due to insufficient functionality. We investigated the potential of hiPS-HEP as an in vitro model for metabolic diseases by combining transcriptomics with multiple functional assays. The transcriptomics analysis revealed that 86% of the genes were expressed at similar levels in hiPS-HEP as in human primary hepatocytes (hphep). Adult characteristics of the hiPS-HEP were confirmed by the presence of important hepatocyte features, e.g., Albumin secretion and expression of major drug metabolizing genes. Normal energy metabolism is crucial for modeling metabolic diseases, and both transcriptomics data and functional assays showed that hiPS-HEP were similar to hphep regarding uptake of glucose, low-density lipoproteins (LDL), and fatty acids. Importantly, the inflammatory state of the hiPS-HEP was low under standard conditions, but in response to lipid accumulation and ER stress the inflammation marker tumor necrosis factor alpha (TNF alpha) was upregulated. Furthermore, hiPS-HEP could be co-cultured with primary hepatic stellate cells both in 2D and in 3D spheroids, paving the way for using these co-cultures for modeling non-alcoholic steatohepatitis (NASH). Taken together, hiPS-HEP have the potential to serve as an in vitro model for metabolic diseases. Furthermore, differently expressed genes identified in this study can serve as targets for future improvements of the hiPS-HEP.
  •  
3.
  • Holmgren, Gustav, 1983-, et al. (författare)
  • Expression Profiling of Human Pluripotent Stem Cell-Derived Cardiomyocytes Exposed to Doxorubicin-Integration and Visualization of Multi-Omics Data
  • 2018
  • Ingår i: Toxicological Sciences. - : Oxford University Press (OUP). - 1096-6080 .- 1096-0929. ; 163:1, s. 182-195
  • Tidskriftsartikel (refereegranskat)abstract
    • Anthracyclines, such as doxorubicin, are highly efficient chemotherapeutic agents against a variety of cancers. However, anthracyclines are also among the most cardiotoxic therapeutic drugs presently on the market. Chemotherapeutic-induced cardiomyopathy is one of the leading causes of disease and mortality in cancer survivors. The exact mechanisms responsible for doxorubicin-induced cardiomyopathy are not completely known, but the fact that the cardiotoxicity is dose-dependent and that there is a variation in time-to-onset of toxicity, and gender- and age differences suggests that several mechanisms may be involved. In this study, we investigated doxorubicin-induced cardiotoxicity in human pluripotent stem cell-derived cardiomyocytes using proteomics. In addition, different sources of omics data (protein, mRNA, and microRNA) from the same experimental setup were further combined and analyzed using newly developed methods to identify differential expression in data of various origin and types. Subsequently, the results were integrated in order to generate a combined visualization of the findings. In our experimental model system, we exposed cardiomyocytes derived from human pluripotent stem cells to doxorubicin for up to 2 days, followed by a wash-out period of additionally 12 days. Besides an effect on the cell morphology and cardiomyocyte functionality, the data show a strong effect of doxorubicin on all molecular levels investigated. Differential expression patterns that show a linkage between the proteome, transcriptome, and the regulatory microRNA network, were identified. These findings help to increase the understanding of the mechanisms behind anthracycline-induced cardiotoxicity and suggest putative biomarkers for this condition.
  •  
4.
  • Holmgren, Gustav, 1983-, et al. (författare)
  • Identification of stable reference genes in differentiating human pluripotent stem cells
  • 2015
  • Ingår i: Physiological Genomics. - : American Physiological Society. - 1094-8341 .- 1531-2267. ; 47:6, s. 232-239
  • Tidskriftsartikel (refereegranskat)abstract
    • Reference genes, often referred to as housekeeping genes (HKGs), are frequently used to normalize gene expression data based on the assumption that they are expressed at a constant level in the cells. However, several studies have shown that there may be a large variability in the gene expression levels of HKGs in various cell types. In a previous study, employing human embryonic stem cells (hESCs) subjected to spontaneous differentiation, we observed that the expression of commonly used HKG varied to a degree that rendered them inappropriate to use as reference genes under those experimental settings. Here we present a substantially extended study of the HKG signature in human pluripotent stem cells (hPSC), including nine global gene expression datasets from both hESC and human induced pluripotent stem cells (hiPSCs), obtained during directed differentiation towards endoderm-, mesoderm-, and ectoderm derivatives. Sets of stably expressed genes were compiled and a handful of genes (e.g., EID2, ZNF324B, CAPN10, and RABEP2) were identified as generally applicable reference genes in hPSCs across all cell lines and experimental conditions. The stability in gene expression profiles was confirmed by quantitative PCR (RT-qPCR) analysis. Taken together, the current results suggest that differentiating hPSCs have a distinct HKG signature, which in some aspects is different from somatic cell types, and underscore the necessity to validate the stability of reference genes under the actual experimental setup used. In addition, the novel putative HKGs identified in this study can preferentially be used for normalization of gene expression data obtained from differentiating hPSCs.
  •  
5.
  •  
6.
  • Holmgren, Gustav, 1983-, et al. (författare)
  • MicroRNAs as potential biomarkers for doxorubicin-induced cardiotoxicity
  • 2016
  • Ingår i: Toxicology in Vitro. - : Elsevier BV. - 0887-2333 .- 1879-3177. ; 34, s. 26-34
  • Tidskriftsartikel (refereegranskat)abstract
    • Anthracyclines, such as doxorubicin, are well-established, highly efficient anti-neoplastic drugs used for treatment of a variety of cancers, including solid tumors, leukemia, lymphomas, and breast cancer. The successful use of doxorubicin has, however, been hampered by severe cardiotoxic side-effects. In order to prevent or reverse negative side-effects of doxorubicin, it is important to find early biomarkers of heart injury and drug-induced cardiotoxicity. The high stability under extreme conditions, presence in various body fluids, and tissue specificity, makes,microRNAs very suitable as clinical.biomarkers. The present study aimed towards evaluating the early and late effects of doxorubicin on the microRNA expression in cardiomyocytes derived from human pluripotent stem cells. We report on several microRNAs, including miR-34a, miR-34b, miR-187, miR-199a, miR-199b, miR-146a, miR-15b, miR-130a, miR-214, and miR-424, that are differentially expressed upon, and after, treatment with doxorubicin. Investigation of the biological relevance of the identified microRNAs revealed connections to cardiomyocyte function and cardiotoxicity, thus supporting the findings of these microRNAs as potential biomarkers for drug-induced cardiotoxicity.
  •  
7.
  •  
8.
  • Österberg, Klas, 1966, et al. (författare)
  • Personalized tissue-engineered veins - long term safety, functionality and cellular transcriptome analysis in large animals
  • 2023
  • Ingår i: Biomaterials Science. - : NLM (Medline). - 2047-4830 .- 2047-4849. ; 11:11, s. 3860-3877
  • Tidskriftsartikel (refereegranskat)abstract
    • Tissue engineering is a promising methodology to produce advanced therapy medicinal products (ATMPs). We have developed personalized tissue engineered veins (P-TEV) as an alternative to autologous or synthetic vascular grafts utilized in reconstructive vein surgery. Our hypothesis is that individualization through reconditioning of a decellularized allogenic graft with autologous blood will prime the tissue for efficient recellularization, protect the graft from thrombosis, and decrease the risk of rejection. In this study, P-TEVs were transplanted to vena cava in pig, and the analysis of three veins after six months, six veins after 12 months and one vein after 14 months showed that all P-TEVs were fully patent, and the tissue was well recellularized and revascularized. To confirm that the ATMP product had the expected characteristics one year after transplantation, gene expression profiling of cells from P-TEV and native vena cava were analyzed and compared by qPCR and sequencing. The qPCR and bioinformatics analysis confirmed that the cells from the P-TEV were highly similar to the native cells, and we therefore conclude that P-TEV is functional and safe in large animals and have high potential for use as a clinical transplant graft.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy