SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Holmgren Milena) "

Sökning: WFRF:(Holmgren Milena)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barrio, Isabel C., et al. (författare)
  • Background invertebrate herbivory on dwarf birch (Betula glandulosa-nana complex) increases with temperature and precipitation across the tundra biome
  • 2017
  • Ingår i: Polar Biology. - : Springer. - 0722-4060 .- 1432-2056. ; 40:11, s. 2265-2278
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic, low intensity herbivory by invertebrates, termed background herbivory, has been understudied in tundra, yet its impacts are likely to increase in a warmer Arctic. The magnitude of these changes is however hard to predict as we know little about the drivers of current levels of invertebrate herbivory in tundra. We assessed the intensity of invertebrate herbivory on a common tundra plant, the dwarf birch (Betula glandulosa-nana complex), and investigated its relationship to latitude and climate across the tundra biome. Leaf damage by defoliating, mining and gall-forming invertebrates was measured in samples collected from 192 sites at 56 locations. Our results indicate that invertebrate herbivory is nearly ubiquitous across the tundra biome but occurs at low intensity. On average, invertebrates damaged 11.2% of the leaves and removed 1.4% of total leaf area. The damage was mainly caused by external leaf feeders, and most damaged leaves were only slightly affected (12% leaf area lost). Foliar damage was consistently positively correlated with mid-summer (July) temperature and, to a lesser extent, precipitation in the year of data collection, irrespective of latitude. Our models predict that, on average, foliar losses to invertebrates on dwarf birch are likely to increase by 6-7% over the current levels with a 1 degrees C increase in summer temperatures. Our results show that invertebrate herbivory on dwarf birch is small in magnitude but given its prevalence and dependence on climatic variables, background invertebrate herbivory should be included in predictions of climate change impacts on tundra ecosystems.
  •  
2.
  •  
3.
  • Bronge, Mattias, et al. (författare)
  • Identification of four novel T cell autoantigens and personal autoreactive profiles in multiple sclerosis
  • 2022
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 8:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS), in which pathological T cells, likely autoimmune, play a key role. Despite its central importance, the autoantigen repertoire remains largely uncharacterized. Using a novel in vitro antigen delivery method combined with the Human Protein Atlas library, we screened for T cell autoreactivity against 63 CNS-expressed proteins. We identified four previously unreported autoantigens in MS: fatty acid-binding protein 7, prokineticin-2, reticulon-3, and synaptosomal-associated protein 91, which were verified to induce interferon-gamma responses in MS in two cohorts. Autoreactive profiles were heterogeneous, and reactivity to several autoantigens was MS-selective. Autoreactive T cells were predominantly CD4(+) and human leukocyte antigen-DR restricted. Mouse immunization induced antigen-specific responses and CNS leukocyte infiltration. This represents one of the largest systematic efforts to date in the search for MS autoantigens, demonstrates the heterogeneity of autoreactive profiles, and highlights promising targets for future diagnostic tools and immunomodulatory therapies in MS.
  •  
4.
  • Flores, Bernardo M., et al. (författare)
  • Soil erosion as a resilience drain in disturbed tropical forests
  • 2020
  • Ingår i: Plant and Soil. - : Springer Science and Business Media LLC. - 0032-079X .- 1573-5036. ; 450:1-2, s. 11-25
  • Forskningsöversikt (refereegranskat)abstract
    • Background Tropical forests are threatened by intensifying natural and anthropogenic disturbance regimes. Disturbances reduce tree cover and leave the organic topsoil vulnerable to erosion processes, but when resources are still abundant forests usually recover. Scope Across the tropics, variation in rainfall erosivity - a measure of potential soil exposure to water erosion - indicates that soils in the wetter regions would experience high erosion rates if they were not protected by tree cover. However, twenty-first-century global land cover data reveal that in wet South America tropical tree cover is decreasing and bare soil area is increasing. Here we address the role of soil erosion in a positive feedback mechanism that may persistently alter the functioning of disturbed tropical forests. Conclusions Based on an extensive literature review, we propose a conceptual model in which soil erosion reinforces disturbance effects on tropical forests, reducing their resilience with time and increasing their likelihood of being trapped in an alternative vegetation state that is persistently vulnerable to erosion. We present supporting field evidence from two distinct forests in central Amazonia that have been repeatedly disturbed. Overall, the strength of the erosion feedback depends on disturbance types and regimes, as well as on local environmental conditions, such as topography, flooding, and soil fertility. As disturbances intensify in tropical landscapes, we argue that the erosion feedback may help to explain why certain forests persist in a degraded state and often undergo critical functional shifts.
  •  
5.
  • Householder, John Ethan, et al. (författare)
  • One sixth of Amazonian tree diversity is dependent on river floodplains
  • 2024
  • Ingår i: NATURE ECOLOGY & EVOLUTION. - 2397-334X.
  • Tidskriftsartikel (refereegranskat)abstract
    • Amazonia's floodplain system is the largest and most biodiverse on Earth. Although forests are crucial to the ecological integrity of floodplains, our understanding of their species composition and how this may differ from surrounding forest types is still far too limited, particularly as changing inundation regimes begin to reshape floodplain tree communities and the critical ecosystem functions they underpin. Here we address this gap by taking a spatially explicit look at Amazonia-wide patterns of tree-species turnover and ecological specialization of the region's floodplain forests. We show that the majority of Amazonian tree species can inhabit floodplains, and about a sixth of Amazonian tree diversity is ecologically specialized on floodplains. The degree of specialization in floodplain communities is driven by regional flood patterns, with the most compositionally differentiated floodplain forests located centrally within the fluvial network and contingent on the most extraordinary flood magnitudes regionally. Our results provide a spatially explicit view of ecological specialization of floodplain forest communities and expose the need for whole-basin hydrological integrity to protect the Amazon's tree diversity and its function.
  •  
6.
  • Lindén, Elin, et al. (författare)
  • Circum-Arctic distribution of chemical anti-herbivore compounds suggests biome-wide trade-off in defence strategies in Arctic shrubs
  • 2022
  • Ingår i: Ecography. - : John Wiley & Sons. - 0906-7590 .- 1600-0587. ; :11
  • Tidskriftsartikel (refereegranskat)abstract
    • Spatial variation in plant chemical defence towards herbivores can help us understand variation in herbivore top–down control of shrubs in the Arctic and possibly also shrub responses to global warming. Less defended, non-resinous shrubs could be more influenced by herbivores than more defended, resinous shrubs. However, sparse field measurements limit our current understanding of how much of the circum-Arctic variation in defence compounds is explained by taxa or defence functional groups (resinous/non-resinous). We measured circum-Arctic chemical defence and leaf digestibility in resinous (Betula glandulosa, B. nana ssp. exilis) and non-resinous (B. nana ssp. nana, B. pumila) shrub birches to see how they vary among and within taxa and functional groups. Using liquid chromatography–mass spectrometry (LC–MS) metabolomic analyses and in vitro leaf digestibility via incubation in cattle rumen fluid, we analysed defence composition and leaf digestibility in 128 samples from 44 tundra locations.We found biogeographical patterns in anti-herbivore defence where mean leaf triterpene concentrations and twig resin gland density were greater in resinous taxa and mean concentrations of condensing tannins were greater in non-resinous taxa. This indicates a biome-wide trade-off between triterpene- or tannin-dominated defences. However, we also found variations in chemical defence composition and resin gland density both within and among functional groups (resinous/non-resinous) and taxa, suggesting these categorisations only partly predict chemical herbivore defence. Complex tannins were the only defence compounds negatively related to in vitro digestibility, identifying this previously neglected tannin group as having a potential key role in birch anti-herbivore defence.We conclude that circum-Arctic variation in birch anti-herbivore defence can be partly derived from biogeographical distributions of birch taxa, although our detailed mapping of plant defence provides more information on this variation and can be used for better predictions of herbivore effects on Arctic vegetation.
  •  
7.
  • Luize, Bruno Garcia, et al. (författare)
  • Geography and ecology shape the phylogenetic composition of Amazonian tree communities
  • 2024
  • Ingår i: JOURNAL OF BIOGEOGRAPHY. - 0305-0270 .- 1365-2699.
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Amazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types. Location: Amazonia. Taxon: Angiosperms (Magnoliids; Monocots; Eudicots). Methods: Data for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny. Results: In the terra firme and v & aacute;rzea forest types, the phylogenetic composition varies by geographic region, but the igap & oacute; and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R-2 = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R-2 = 28%). A greater number of lineages were significant indicators of geographic regions than forest types. Main Conclusion: Numerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions.
  •  
8.
  • ter Steege, Hans, et al. (författare)
  • Mapping density, diversity and species-richness of the Amazon tree flora
  • 2023
  • Ingår i: COMMUNICATIONS BIOLOGY. - 2399-3642. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution. A study mapping the tree species richness in Amazonian forests shows that soil type exerts a strong effect on species richness, probably caused by the areas of these forest types. Cumulative water deficit, tree density and temperature seasonality affect species richness at a regional scale.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Typ av publikation
tidskriftsartikel (7)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (8)
Författare/redaktör
Holmgren, Milena (7)
Forbes, Bruce C. (3)
Schmidt, Niels Marti ... (3)
Malhi, Yadvinder (3)
Phillips, Oliver L. (3)
Carvalho, Fernanda A ... (3)
visa fler...
ter Steege, Hans (3)
Barlow, Jos (3)
Berenguer, Erika (3)
Olofsson, Johan (3)
Speed, James D. M. (3)
Balslev, Henrik (3)
Barrio, Isabel C. (3)
Soininen, Eeva M. (3)
Lindén, Elin (3)
Te Beest, Mariska (3)
Boike, Julia (3)
Bryant, John P. (3)
Buchwal, Agata (3)
Bueno, C. Guillermo (3)
Hallinger, Martin (3)
Hofgaard, Annika (3)
Høye, Toke T. (3)
Huebner, Diane C. (3)
Kumpula, Timo (3)
Limpens, Juul (3)
Normand, Signe (3)
Sundqvist, Maja K. (3)
Tananaev, Nikita (3)
Tremblay, Jean-Pierr ... (3)
Urbanowicz, Christin ... (3)
Huamantupa-Chuquimac ... (3)
Rivas-Torres, Gonzal ... (3)
Farfan-Rios, William (3)
de Aguiar, Daniel P. ... (3)
Ahuite Reategui, Man ... (3)
Albuquerque, Bianca ... (3)
Alonso, Alfonso (3)
do Amaral, Dário Dan ... (3)
do Amaral, Iêda Leão (3)
Andrade, Ana (3)
de Andrade Miranda, ... (3)
Araujo-Murakami, Ale ... (3)
Arroyo, Luzmila (3)
Aymard C, Gerardo A. (3)
Baider, Cláudia (3)
Bánki, Olaf S. (3)
Baraloto, Chris (3)
Barbosa, Edelcilio M ... (3)
Barbosa, Flávia Rodr ... (3)
visa färre...
Lärosäte
Göteborgs universitet (3)
Umeå universitet (3)
Sveriges Lantbruksuniversitet (2)
Kungliga Tekniska Högskolan (1)
Uppsala universitet (1)
Stockholms universitet (1)
visa fler...
Karolinska Institutet (1)
visa färre...
Språk
Engelska (8)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (5)
Lantbruksvetenskap (2)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy