SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Holmkvist Johan) "

Sökning: WFRF:(Holmkvist Johan)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cervin, Camilla, et al. (författare)
  • An investigation of serum concentration of apoM as a potential MODY3 marker using a novel ELISA.
  • 2010
  • Ingår i: Journal of Internal Medicine. - : Wiley. - 1365-2796 .- 0954-6820. ; 267, s. 316-321
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract. Cervin C, Axler O, Holmkvist J, Almgren P, Rantala E, Tuomi T, Groop L, Dahlbäck B, Karlsson E (Lund University, Malmö, Sweden, Steno Diabetes Center, Gentofte, Denmark, University of Helsinki; and Folkhälsan Research Centre, Helsinki, Finland). An investigation of serum concentration of apoM as a potential MODY3 marker using a novel ELISA. J Intern Med 2009; doi: 10.1111/j.1365-2796.2009.02145.x.Objective. To investigate the fitness of serum apolipoprotein M (apoM) concentration as a marker for maturity-onset diabetes of the young 3 (MODY3). Study design and subjects. This study consisted of two parts. A family study included 71 carriers of the P291fsinsC mutation in hepatocyte nuclear factor-1alpha (HNF-1alpha) from the Finnish Botnia study, 53 of whom were diabetic, and 75 matched family controls. A second, case-control study included 24 MODY3 patients, 17 healthy MODY3 mutation carriers, 11 MODY1 patients, 18 type 2 diabetes patients and 19 healthy control individuals. Subjects in the case-control study were recruited from the Botnia study or the Clinic of Endocrinology, Malmö University Hospital. Serum apoM levels were measured using a novel ELISA based on two monoclonal apoM antibodies. Results. In the family study, mean serum apoM was 10% lower in female carriers of the P291fsinsC mutation compared to the family controls (P = 0.0058), a difference which remained significant after adjustment for diabetes status. There was no observed difference between groups for men. In the case-control study, no significant difference in apoM concentration was observed between MODY3 and type 2 diabetes patients, neither before nor after adjustment for total cholesterol. Conclusions. Female carriers of the P291fsinsC mutation in HNF-1alpha displayed slightly lower apoM serum levels. This difference is too small for apoM to be reliably employed as a biomarker for HNF-1alpha mutation status.
  •  
2.
  • Eriksson, Victoria, et al. (författare)
  • A retrospective analysis of the de ritis ratio in muscle invasive bladder cancer, with focus on tumor response and long-term survival in patients receiving neoadjuvant chemotherapy and in chemo naïve cystectomy patients : a study of a clinical multicentre database
  • 2022
  • Ingår i: Journal of Personalized Medicine. - : MDPI. - 2075-4426. ; 12:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: A high pre-treatment De Ritis ratio, the aspartate transaminase/alanine aminotransferase ratio, has been suggested to be of prognostic value for mortality in muscle-invasive bladder cancer (MIBC). Our purpose was to evaluate if a high ratio was associated with mortality and downstaging. Methods: A total of 347 Swedish patients with clinically staged T2-T4aN0M0, with administered neoadjuvant chemotherapy (NAC) or eligible for NAC and undergoing radical cystectomy (RC) 2009–2021, were retrospectively evaluated with a low ratio < 1.3 vs. high ratio > 1.3, by Log Rank test, Cox regression and Mann–Whitney U-test (MWU), SPSS 27. Results: Patients with a high ratio had a decrease of up to 3 years in disease-free survival (DFS), cancer-specific survival (CSS) and overall survival (OS) (p = 0.009, p = 0.004 and p = 0.009) and 5 years in CSS and OS (p = 0.019 and p = 0.046). A high ratio was associated with increased risk of mortality, highest in DFS (HR, 1.909; 95% CI, 1.265–2.880; p = 0.002). No significant relationship between downstaging and a high ratio existed (p = 0.564 MWU). Conclusion: A high pre-treatment De Ritis ratio is on a population level, associated with increased mortality post-RC in endpoints DFS, CSS and OS. Associations decrease over time and require further investigations to determine how strong the associations are as meaningful prognostic markers for long-term mortality in MIBC. The ratio is not suitable for downstaging-prediction.
  •  
3.
  • Florez, Jose C., et al. (författare)
  • Haplotype Structure and Genotype-Phenotype Correlations of the Sulfonylurea Receptor and the Islet ATP-Sensitive Potassium Channel Gene Region.
  • 2004
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 53:5, s. 1360-1368
  • Tidskriftsartikel (refereegranskat)abstract
    • The genes for the sulfonylurea receptor (SUR1; encoded by ABCC8) and its associated islet ATP-sensitive potassium channel (Kir6.2; encoded by KCNJ11) are adjacent to one another on human chromosome 11. Multiple studies have reported association of the E23K variant of Kir6.2 with risk of type 2 diabetes. Whether and how E23K itself—or other variant(s) in either of these two closely linked genes—influences type 2 diabetes remains to be fully determined. To better understand genotype-phenotype correlation at this important candidate gene locus, we 1) characterized haplotype structures across the gene region by typing 77 working, high-frequency markers spanning 207 kb and both genes; 2) performed association studies of E23K and nearby markers in &gt;3,400 patients (type 2 diabetes and control) not previously reported in the literature; and 3) analyzed the resulting data for measures of insulin secretion. These data independently replicate the association of E23K with type 2 diabetes with an odds ratio (OR) in the new data of 1.17 (P = 0.003) as compared with an OR of 1.14 provided by meta-analysis of previously published, nonoverlapping data (P = 0.0002). We find that the E23K variant in Kir6.2 demonstrates very strong allelic association with a coding variant (A1369S) in the neighboring SUR1 gene (r2 &gt; 0.9) across a range of population samples, making it difficult to distinguish which gene and polymorphism in this region are most likely responsible for the reported association. We show that E23K is also associated with decreased insulin secretion in glucose-tolerant control subjects, supporting a mechanism whereby β-cell dysfunction contributes to the common form of type 2 diabetes. Like peroxisome proliferator–activated receptor γ, the SUR1/Kir6.2 gene region both contributes to the inherited risk of type 2 diabetes and encodes proteins that are targets for hypoglycemic medications, providing an intriguing link between the underlying mechanism of disease and validated targets for pharmacological treatment.
  •  
4.
  • Holmkvist, Alexander Dontsios, et al. (författare)
  • Local delivery of minocycline-loaded PLGA nanoparticles from gelatin-coated neural implants attenuates acute brain tissue responses in mice
  • 2020
  • Ingår i: Journal of Nanobiotechnology. - : Springer Science and Business Media LLC. - 1477-3155. ; 18:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Neural interfaces often elicit inflammatory responses and neuronal loss in the surrounding tissue which adversely affect the function and longevity of the implanted device. Minocycline, an anti-inflammatory pharmaceutics with neuroprotective properties, may be used for reducing the acute brain tissue responses after implantation. However, conventional administration routes require high doses which can cause adverse systemic side effects. Therefore, the aim of this study was to develop and evaluate a new drug-delivery-system for local and sustained administration of minocycline in the brain. Methods: Stainless steel needles insulated with Parylene-C were dip-coated with non-crosslinked gelatin and minocycline-loaded PLGA nanoparticles (MC-NPs) were incorporated into the gelatin-coatings by an absorption method and subsequently trapped by drying the gelatin. Parylene-C insulated needles coated only with gelatin were used as controls. The expression of markers for activated microglia (CD68), all microglia (CX3CR1-GFP), reactive astrocytes (GFAP), neurons (NeuN) and all cell nuclei (DAPI) surrounding the implantation sites were quantified at 3 and 7 days after implantation in mice. Results: MC-NPs were successfully incorporated into gelatin-coatings of neural implants by an absorption method suitable for thermosensitive drug-loads. Immunohistochemical analysis of the in vivo brain tissue responses, showed that MC-NPs significantly attenuate the activation of microglial cells without effecting the overall population of microglial cells around the implantation sites. A delayed but significant reduction of the astrocytic response was also found in comparison to control implants. No effect on neurons or total cell count was found which may suggest that the MC-NPs are non-toxic to the central nervous system. Conclusions: A novel drug-nanoparticle-delivery-system was developed for neural interfaces and thermosensitive drug-loads. The local delivery of MC-NPs was shown to attenuate the acute brain tissue responses nearby an implant and therefore may be useful for improving biocompatibility of implanted neuro-electronic interfaces. The developed drug-delivery-system may potentially also be used for other pharmaceutics to provide highly localized and therefore more specific effects as compared to systemic administration.
  •  
5.
  • Holmkvist, Johan, et al. (författare)
  • Common variants in HNF-1 alpha and risk of type 2 diabetes.
  • 2006
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 49:Oct 11, s. 2882-2891
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in the hepatocyte nuclear factor 1-alpha gene (HNF-1 alpha, now known as the transcription factor 1 gene [TCF1]) cause the most common monogenic form of diabetes, MODY3, but it is not known if common variants in HNF-1a are associated with decreased transcriptional activity or phenotypes related to type 2 diabetes, or whether they predict future type 2 diabetes. We studied the effect of four common polymorphisms (rs1920792, I27L, A98V and S487N) in and upstream of the HNF-1 alpha gene on transcriptional activity in vitro, and their possible association with type 2 diabetes and insulin secretion in vivo. Certain combinations of the I27L and A98V polymorphisms in the HNF-1 alpha gene showed decreased transcriptional activity on the target promoters glucose transporter 2 (now known as solute carrier family 2 [facilitated glucose transporter], member 2) and albumin in both HeLa and INS-1 cells. In vivo, these polymorphisms were associated with a modest but significant impairment in insulin secretion in response to oral glucose. Insulin secretion deteriorated over time in individuals carrying the V allele of the A98V polymorphism (n=2,293; p=0.003). In a new case-control (=1,511 and n=2,225 respectively) data set, the I27L polymorphism was associated with increased risk of type 2 diabetes, odds ratio (OR)=1.5 (p=0.002; multiple logistic regression), particularly in elderly (age > 60 years) and overweight (BMI > 25 kg/m(2)) patients (OR=2.3, p=0.002). This study provides in vitro and in vivo evidence that common variants in the MODY3 gene, HNF-1 alpha, influence transcriptional activity and insulin secretion in vivo. These variants are associated with a modestly increased risk of late-onset type 2 diabetes in subsets of elderly overweight individuals.
  •  
6.
  • Holmkvist, Johan, et al. (författare)
  • Common variants in maturity-onset diabetes of the young genes and future risk of type 2 diabetes
  • 2008
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 57:6, s. 1738-1744
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE-Mutations in the hepatocyte nuclear factor (HNF)-1 alpha, HNF-4 alpha, glucokinase (GCK), and HNF-1 beta genes cause maturity-onset diabetes of the young (MODY), but it is not known whether common variants in these genes predict future type 2 diabetes. RESEARCH DESIGN AND METHODS-We tested 14 previously associated polymorphisms in HNF-1 alpha, HNF-4 alpha, GCK, and HNF-1 beta for association with type 2 diabetes-related traits and future risk of type 2 diabetes in 2,293 individuals from the Botnia study (Finland) and in 15,538 individuals from the Malmo Preventive Project (Sweden) with a total follow-up >360,000 years. RESULTS-The polymorphism rs1169288 in HNF-1 alpha strongly predicted future type 2 diabetes (hazard ratio [HR] 1.2, P = 0.0002). Also, SNPs rs4810424 and rs3212198 in HNF-4a nominally predicted future type 2 diabetes (HR 1.3 [95% CI 1.0-1.6], P = 0.03; and 1.1 [1.0-1.2], P = 0.04). The rs2144908 polymorphism in HNF-4 alpha was associated with elevated rate of hepatic glucose production during a hyperinsulinemic-euglycemic clamp (P = 0.03) but not with deterioration of insulin secretion over time. The SNP rs1799884 in the GCK promoter was associated with elevated fasting plasma glucose (fPG) concentrations that remained unchanged during the follow-up period (P = 0.4; SE 0.004 [-0.003-0.007]) but did not predict future type 2 diabetes (HR 0.9 [0.8 -1.0], P = 0.1). Polymorphisms in HNF-1 beta (transcription factor 2 [TCF2]) did not significantly influence insulin or glucose values nor did they predict future type 2 diabetes. CONCLUSIONS-In conclusion, genetic variation in both HNF-1 alpha and HNF-4 alpha predict future type 2 diabetes, whereas variation in the GCK promoter results in a sustained but subtle elevation of fPG that is not sufficient to increase risk for future type 2 diabetes.
  •  
7.
  • Holmkvist, Johan (författare)
  • Exploring Positional and Functional Candidate Genes for Type 2 Diabetes
  • 2007
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Type 2 diabetes (T2D) is a complex, metabolic disorder characterized by hyperglycaemia because of defects in insulin secretion and sensitivity. The rapid increase in T2D is likely to reflect the influence of both genetic and environmental factors in disease development. However, the genetic aetiology of T2D remains largely unknown. Thus, the aim of this thesis was to study the role of genetic variation in positional and functional candidate genes for T2D. In the first study, we studied association between polymorphisms in the FXN gene and T2D. We excluded that polymorphisms in FXN have a role in T2D susceptibility. The ?common variation common disease? hypothesis suggests that common polymorphisms increase susceptibility to common disorders. Thus, it is reasonable to hypothesize that variants in genes causing rare monogenic forms of diabetes also harbours polymorphisms that increase susceptibility for the more common late onset T2D. Mutations in the HNF-1a gene cause Maturity Onset Diabetes of the Young (MODY) type 3, and this is the most frequent form of monogenic diabetes. We studied polymorphisms in this gene and observed that the I27L and A98V polymorphisms were associated with decreased insulin secretion and a modest increase in risk of future T2D, especially in overweight individuals. In a subsequent study polymorphisms in the HNF-4a, GCK and HNF-1b genes (causing MODY 1, 2 and 5 respectively) were studied. An HNF-4a P2 promoter variant was associated with elevated rates of hepatic glucose production during hyperinsulinaemic euglycaemic clamp and increased future risk of T2D. A polymorphism in the GCK promoter was associated with increased fasting plasma glucose levels that maintained unchanged during follow-up, but had no effect on risk of future T2D. Genetic variation in the HNF-1b gene did not confer increased risk of future T2D. Glucose stimulated insulin secretion is dependent on electrical activity in the beta-cells, hence ion-channels in the beta-cells are potential candidate genes for T2D. We also showed that polymorphisms in the CACNA1E gene, which encodes for the CaV2.3 pore forming subunit were associated with reduced second phase insulin secretion and increased risk of future T2D. In conclusion, these results suggest that: 1) common variation in MODY genes confer an increased risk of future T2D, particularly in individuals with increased insulin demands; 2) variation in the CACNA1E gene is associated with T2D and contribute to regulation of second phase insulin secretion.
  •  
8.
  •  
9.
  • Holmkvist, Johan, et al. (författare)
  • Polymorphisms in the gene encoding the voltage-dependent Ca(2+) channel Ca (V)2.3 (CACNA1E) are associated with type 2 diabetes and impaired insulin secretion
  • 2007
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 50:12, s. 2467-2475
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: Glucose-stimulated insulin secretion is dependent on the electrical activity of beta cells; hence, genes encoding beta cell ion channels are potential candidate genes for type 2 diabetes. The gene encoding the voltage-dependent Ca(2+) channel Ca(V)2.3 (CACNA1E), telomeric to a region that has shown suggestive linkage to type 2 diabetes (1q21-q25), has been ascribed a role for second-phase insulin secretion. METHODS: Based upon the genotyping of 52 haplotype tagging single nucleotide polymorphisms (SNPs) in a type 2 diabetes case-control sample (n = 1,467), we selected five SNPs that were nominally associated with type 2 diabetes and genotyped them in the following groups (1) a new case-control sample of 6,570 individuals from Sweden; (2) 2,293 individuals from the Botnia prospective cohort; and (3) 935 individuals with insulin secretion data from an IVGTT. RESULTS: The rs679931 TT genotype was associated with (1) an increased risk of type 2 diabetes in the Botnia case-control sample [odds ratio (OR) 1.4, 95% CI 1.0-2.0, p = 0.06] and in the replication sample (OR 1.2, 95% CI 1.0-1.5, p = 0.01 one-tailed), with a combined OR of 1.3 (95% CI 1.1-1.5, p = 0.004 two-tailed); (2) reduced insulin secretion [insulinogenic index at 30 min p = 0.02, disposition index (D (I)) p = 0.03] in control participants during an OGTT; (3) reduced second-phase insulin secretion at 30 min (p = 0.04) and 60 min (p = 0.02) during an IVGTT; and (4) reduced D (I) over time in the Botnia prospective cohort (p = 0.05). CONCLUSIONS/INTERPRETATION: We conclude that genetic variation in the CACNA1E gene contributes to an increased risk of the development of type 2 diabetes by reducing insulin secretion.
  •  
10.
  • Ling, Charlotte, et al. (författare)
  • Genetic and epigenetic factors are associated with expression of respiratory chain component NDUFB6 in human skeletal muscle.
  • 2007
  • Ingår i: The Journal of clinical investigation. - 0021-9738. ; 117:11, s. 3427-35
  • Tidskriftsartikel (refereegranskat)abstract
    • Insulin resistance and type 2 diabetes are associated with decreased expression of genes that regulate oxidative phosphorylation in skeletal muscle. To determine whether this defect might be inherited or acquired, we investigated the association of genetic, epigenetic, and nongenetic factors with expression of NDUFB6, a component of the respiratory chain that is decreased in muscle from diabetic patients. Expression of NDUFB6 was influenced by age, with lower gene expression in muscle of elderly subjects. Heritability of NDUFB6 expression in muscle was estimated to be approximately 60% in twins. A polymorphism in the NDUFB6 promoter region that creates a possible DNA methylation site (rs629566, A/G) was associated with a decline in muscle NDUFB6 expression with age. Although young subjects with the rs629566 G/G genotype exhibited higher muscle NDUFB6 expression, this genotype was associated with reduced expression in elderly subjects. This was subsequently explained by the finding of increased DNA methylation in the promoter of elderly, but not young, subjects carrying the rs629566 G/G genotype. Furthermore, the degree of DNA methylation correlated negatively with muscle NDUFB6 expression, which in turn was associated with insulin sensitivity. Our results demonstrate that genetic, epigenetic, and nongenetic factors associate with NDUFB6 expression in human muscle and suggest that genetic and epigenetic factors may interact to increase age-dependent susceptibility to insulin resistance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15
Typ av publikation
tidskriftsartikel (14)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (14)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Groop, Leif (10)
Almgren, Peter (10)
Tuomi, Tiinamaija (6)
Lyssenko, Valeriya (4)
Nilsson, Peter (3)
Nilsson, P. (2)
visa fler...
Isomaa, B. (2)
Tuomi, T. (2)
Rönn, Tina (2)
Ling, Charlotte (2)
Berglund, Göran (2)
Isomaa, Bo (2)
Poulsen, Pernille (2)
Vaag, Allan (2)
Cervin, Camilla (2)
Altshuler, D. (2)
Winckler, W (2)
Daly, Mark J. (2)
Sherif, Amir (1)
Nilsson, Emma (1)
Hansson, Ola (1)
Renström, Erik (1)
Aljabery, Firas (1)
Stjernberg, Louise (1)
Kere, Juha (1)
Melander, Olle (1)
Sjögren, Marketa (1)
Taskinen, Marja-Riit ... (1)
Cilio, Corrado (1)
Hagert, Per (1)
Agorelius, Johan (1)
Schouenborg, Jens (1)
Johansson, Markus (1)
Alamdari, Farhood (1)
Huge, Ylva (1)
Laurila, Esa (1)
Grarup, Niels (1)
Pedersen, Oluf (1)
Orho-Melander, Marju (1)
Hansen, Torben (1)
Dahlbäck, Björn (1)
Jorgensen, Torben (1)
Eriksson, Karl-Fredr ... (1)
Axler, Olof (1)
Hughes, Thomas E (1)
Berglund, Johan (1)
Råstam, Lennart (1)
Sterner, Maria (1)
Chen, Hong (1)
Svensson, Johan, 197 ... (1)
visa färre...
Lärosäte
Lunds universitet (13)
Karolinska Institutet (4)
Göteborgs universitet (2)
Umeå universitet (1)
Linköpings universitet (1)
Malmö universitet (1)
visa fler...
Chalmers tekniska högskola (1)
Blekinge Tekniska Högskola (1)
Röda Korsets Högskola (1)
visa färre...
Språk
Engelska (15)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (14)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy