SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Holoien T. W S) "

Sökning: WFRF:(Holoien T. W S)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Aartsen, M. G., et al. (författare)
  • Multiwavelength follow-up of a rare IceCube neutrino multiplet
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 607
  • Tidskriftsartikel (refereegranskat)abstract
    • On February 17, 2016, the IceCube real-time neutrino search identified, for the first time, three muon neutrino candidates arriving within 100 s of one another, consistent with coming from the same point in the sky. Such a triplet is expected once every 13.7 years as a random coincidence of background events. However, considering the lifetime of the follow-up program the probability of detecting at least one triplet from atmospheric background is 32%. Follow-up observatories were notified in order to search for an electromagnetic counterpart. Observations were obtained by Swift's X-ray telescope, by ASAS-SN, LCO and MASTER at optical wavelengths, and by VERITAS in the very-high-energy gamma-ray regime. Moreover, the Swift BAT serendipitously observed the location 100 s after the first neutrino was detected, and data from the Fermi LAT and HAWC observatory were analyzed. We present details of the neutrino triplet and the follow-up observations. No likely electromagnetic counterpart was detected, and we discuss the implications of these constraints on candidate neutrino sources such as gamma-ray bursts, core-collapse supernovae and active galactic nucleus flares. This study illustrates the potential of and challenges for future follow-up campaigns.
  •  
3.
  • Garrappa, S., et al. (författare)
  • Investigation of Two Fermi-LAT Gamma-Ray Blazars Coincident with High-energy Neutrinos Detected by IceCube
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 880:2
  • Tidskriftsartikel (refereegranskat)abstract
    • After the identification of the gamma-ray blazar TXS 0506+056 as the first compelling IceCube neutrino source candidate, we perform a systematic analysis of all high-energy neutrino events satisfying the IceCube realtime trigger criteria. We find one additional known gamma-ray source, the blazar GB6 J1040+0617, in spatial coincidence with a neutrino in this sample. The chance probability of this coincidence is 30% after trial correction. For the first time, we present a systematic study of the gamma-ray flux, spectral and optical variability, and multiwavelength behavior of GB6 J1040+0617 and compare it to TXS 0506+056. We find that TXS 0506+056 shows strong flux variability in the Fermi-Large Area Telescope gamma-ray band, being in an active state around the arrival of IceCube-170922A, but in a low state during the archival IceCube neutrino flare in 2014/15. In both cases the spectral shape is statistically compatible (<= 2 sigma) with the average spectrum showing no indication of a significant relative increase of a high-energy component. While the association of GB6 J1040+0617 with the neutrino is consistent with background expectations, the source appears to be a plausible neutrino source candidate based on its energetics and multiwavelength features, namely a bright optical flare and modestly increased gamma-ray activity. Finding one or two neutrinos originating from gamma-ray blazars in the given sample of high-energy neutrinos is consistent with previously derived limits of neutrino emission from gamma-ray blazars, indicating the sources of the majority of cosmic high-energy neutrinos remain unknown.
  •  
4.
  • De Rosa, G., et al. (författare)
  • Velocity-resolved Reverberation Mapping of Five Bright Seyfert 1 Galaxies
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 866:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first results from a reverberation-mapping campaign undertaken during the first half of 2012, with additional data on one active galactic nucleus (AGN) (NGC 3227) from a 2014 campaign. Our main goals are (1) to determine the black hole masses from continuum-H beta reverberation signatures, and (2) to look for velocity-dependent time delays that might be indicators of the gross kinematics of the broad-line region. We successfully measure H beta time delays and black hole masses for five AGNs, four of which have previous reverberation mass measurements. The values measured here are in agreement with earlier estimates, though there is some intrinsic scatter beyond the formal measurement errors. We observe velocity-dependent H beta lags in each case, and find that the patterns have changed in the intervening five years for three AGNs that were also observed in 2007.
  •  
5.
  • Galbany, L., et al. (författare)
  • Evidence for a Chandrasekhar-mass explosion in the Ca-strong 1991bg-like type la supernova 2016hnk
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 630
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We present a comprehensive dataset of optical and near-infrared photometry and spectroscopy of type Ia supernova (SN) 2016hnk, combined with integral field spectroscopy (IFS) of its host galaxy, MCG -01-06-070, and nearby environment. Our goal with this complete dataset is to understand the nature of this peculiar object.Methods. Properties of the SN local environment are characterized by means of single stellar population synthesis applied to IFS observations taken two years after the SN exploded. We performed detailed analyses of SN photometric data by studying its peculiar light and color curves. SN 2016hnk spectra were compared to other 1991bg-like SNe Ia, 2002es-like SNe Ia, and Ca-rich transients. In addition, we used abundance stratification modeling to identify the various spectral features in the early phase spectral sequence and also compared the dataset to a modified non-LTE model previously produced for the sublumnious SN 1999by.Results. SN 2016hnk is consistent with being a subluminous (M-B = -16.7 mag, S-BV =0.43 +/- 0.03), highly reddened object. The IFS of its host galaxy reveals both a significant amount of dust at the SN location, residual star formation, and a high proportion of old stellar populations in the local environment compared to other locations in the galaxy, which favors an old progenitor for SN 2016hnk. Inspection of a nebular spectrum obtained one year after maximum contains two narrow emission lines attributed to the forbidden [Ca II] lambda lambda 7291,7324 doublet with a Doppler shift of 700 km s(-1). Based on various observational diagnostics, we argue that the progenitor of SN 2016hnk was likely a near Chandrasekhar-mass (M-Ch) carbon-oxygen white dwarf that produced 0.108 M-circle dot of Ni-56. Our modeling suggests that the narrow [Ca II] features observed in the nebular spectrum are associated with Ca-48 from electron capture during the explosion, which is expected to occur only in white dwarfs that explode near or at the M-Ch limit.
  •  
6.
  • Pastorello, A., et al. (författare)
  • Supernovae 2016bdu and 2005gl, and their link with SN 2009ip-like transients : another piece of the puzzle
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 474:1, s. 197-218
  • Tidskriftsartikel (refereegranskat)abstract
    • Supernova (SN) 2016bdu is an unusual transient resembling SN 2009ip. SN 2009ip-like events are characterized by a long-lasting phase of erratic variability that ends with two luminous outbursts a few weeks apart. The second outburst is significantly more luminous (about 3 mag) than the first. In the case of SN 2016bdu, the first outburst (Event A) reached an absolute magnitude M-r approximate to -15.3 mag, while the second one (Event B) occurred over one month later and reached M-r approximate to -18 mag. By inspecting archival data, a faint source at the position of SN 2016bdu is several times in the past few years. We interpret these detections as signatures of a phase of erratic variability, similar to that experienced by SN 2009ip between 2008 and mid-2012, and resembling the currently observed variability of the luminous blue variable SN 2000ch in NGC 3432. Spectroscopic monitoring of SN 2016bdu during the second peak initially shows features typical of an SN IIn. One month after the Event B maximum, the spectra develop broad Balmer lines with P Cygni profiles and broad metal features. At these late phases, the spectra resemble those of a typical Type II SN. All members of this SN 2009ip-like group are remarkably similar to the Type IIn SN 2005gl. For this object, the claim of a terminal SN explosion is supported by the disappearance of the progenitor star. While the similarity with SN 2005gl supports a genuine SN explosion scenario for SN 2009ip-like events, the unequivocal detection of nucleosynthesized elements in their nebular spectra is still missing.
  •  
7.
  • Brennan, S. J., et al. (författare)
  • Photometric and spectroscopic evolution of the interacting transient AT 2016jbu(Gaia16cfr)
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 513:4, s. 5642-5665
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results from a high-cadence, multiwavelength observation campaign of AT 2016jbu (aka Gaia16cfr), an interacting transient. This data set complements the current literature by adding higher cadence as well as extended coverage of the light-curve evolution and late-time spectroscopic evolution. Photometric coverage reveals that AT 2016jbu underwent significant photometric variability followed by two luminous events, the latter of which reached an absolute magnitude of MV ∼ −18.5 mag. This is similar to the transient SN 2009ip whose nature is still debated. Spectra are dominated by narrow emission lines and show a blue continuum during the peak of the second event. AT 2016jbu shows signatures of a complex, non-homogeneous circumstellar material (CSM). We see slowly evolving asymmetric hydrogen line profiles, with velocities of 500 km s−1 seen in narrow emission features from a slow-moving CSM, and up to 10 000 km s−1 seen in broad absorption from some high-velocity material. Late-time spectra (∼+1 yr) show a lack of forbidden emission lines expected from a core-collapse supernova and are dominated by strong emission from H, He I, and Ca II. Strong asymmetric emission features, a bumpy light curve, and continually evolving spectra suggest an inhibit nebular phase. We compare the evolution of H α among SN 2009ip-like transients and find possible evidence for orientation angle effects. The light-curve evolution of AT 2016jbu suggests similar, but not identical, circumstellar environments to other SN 2009ip-like transients.
  •  
8.
  • Brennan, S. J., et al. (författare)
  • Progenitor, environment, and modelling of the interacting transient AT 2016jbu (Gaia16cfr)
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 513:4, s. 5666-5685
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the bolometric light curve, identification and analysis of the progenitor candidate, and preliminary modelling of AT 2016jbu (Gaia16cfr). We find a progenitor consistent with a ∼ 22–25 M⊙ yellow hypergiant surrounded by a dusty circumstellar shell, in agreement with what has been previously reported. We see evidence for significant photometric variability in the progenitor, as well as strong Hα emission consistent with pre-existing circumstellar material. The age of the environment, as well as the resolved stellar population surrounding AT 2016jbu, supports a progenitor age of >10 Myr, consistent with a progenitor mass of ∼22 M⊙. A joint analysis of the velocity evolution of AT 2016jbu and the photospheric radius inferred from the bolometric light curve shows the transient is consistent with two successive outbursts/explosions. The first outburst ejected material with velocity ∼650 km s−1, while the second, more energetic event ejected material at ∼4500 km s−1. Whether the latter is the core collapse of the progenitor remains uncertain. We place a limit on the ejected 56Ni mass of <0.016 M⊙. Using the Binary Population And Spectral Synthesis (BPASS) code, we explore a wide range of possible progenitor systems and find that the majority of these are in binaries, some of which are undergoing mass transfer or common-envelope evolution immediately prior to explosion. Finally, we use the SuperNova Explosion Code (SNEC) to demonstrate that the low-energy explosions within some of these binary systems, together with sufficient circumstellar material, can reproduce the overall morphology of the light curve of AT 2016jbu.
  •  
9.
  • Gutiérrez, C. P., et al. (författare)
  • SN 2017ivv : two years of evolution of a transitional Type II supernova
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 499:1, s. 974-992
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the photometric and spectroscopic evolution of the Type II supernova (SN II) SN 2017ivv (also known as ASASSN-17qp). Located in an extremely faint galaxy (M-r =-10.3 mag), SN 2017ivv shows an unprecedented evolution during the 2 yr of observations. At early times, the light curve shows a fast rise (similar to 6-8 d) to a peak of M-g(max) = -17.84 mag, followed by a very rapid decline of 7.94 +/- 0.48 mag per 100 d in the V band. The extensive photometric coverage at late phases shows that the radioactive tail has two slopes, one steeper than that expected from the decay of Co-56 (between 100 and 350 d), and another slower (after 450 d), probably produced by an additional energy source. From the bolometric light curve, we estimated that the amount of ejected 5(6)Ni is similar to 0.059 +/- 0.003M(circle dot). The nebular spectra of SN 2017ivv show a remarkable transformation that allows the evolution to be split into three phases: (1) H alpha strong phase (<200 d); (2) H alpha weak phase (between 200 and 350 d); and (3) H alpha broad phase (>500 d). We find that the nebular analysis favours a binary progenitor and an asymmetric explosion. Finally, comparing the nebular spectra of SN 2017ivv to models suggests a progenitor with a zero-age main-sequence mass of 15-17M(circle dot).
  •  
10.
  • Bose, Subhash, et al. (författare)
  • ASASSN-18am/SN 2018gk : an overluminous Type IIb supernova from a massive progenitor
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 503:3, s. 3472-3491
  • Tidskriftsartikel (refereegranskat)abstract
    • ASASSN-18am/SN 2018gk is a newly discovered member of the rare group of luminous, hydrogen-rich supernovae (SNe) with a peak absolute magnitude of M-V approximate to -20 mag that is in between normal core-collapse SNe and superluminous SNe. These SNe show no prominent spectroscopic signatures of ejecta interacting with circumstellar material (CSM), and their powering mechanism is debated. ASASSN-18am declines extremely rapidly for a Type II SN, with a photospheric-phase decline rate of similar to 6.0 mag (100 d)(-1). Owing to the weakening of H I and the appearance of He I in its later phases, ASASSN-18am is spectroscopically a Type IIb SN with a partially stripped envelope. However, its photometric and spectroscopic evolution shows significant differences from typical SNe IIb. Using a radiative diffusion model, we find that the light curve requires a high synthesized Ni-56 mass M-Ni similar to 0.4 M-circle dot and ejecta with high kinetic energy E-kin = (7-10) x 10(51) erg. Introducing a magnetar central engine still requires M-Ni similar to 0.3 M-circle dot and E-kin = 3 x 10(51) erg. The high Ni-56 mass is consistent with strong iron-group nebular lines in its spectra, which are also similar to several SNe Ic-BL with high Ni-56 yields. The earliest spectrum shows 'flash ionization' features, from which we estimate a mass-loss rate of (M) over dot approximate to 2 x 10(-4 )M(circle dot) yr(-1). This wind density is too low to power the luminous light curve by ejecta-CSM interaction. We measure expansion velocities as high as 17 000 km s(-1) for H alpha, which is remarkably high compared to other SNe II. We estimate an oxygen core mass of 1.8-3.4 M-circle dot using the [O I] luminosity measured from a nebular-phase spectrum, implying a progenitor with a zero-age main-sequence mass of 19-26 M-circle dot.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy