SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Honcharenko Dmytro) "

Sökning: WFRF:(Honcharenko Dmytro)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Honcharenko, Dmytro, et al. (författare)
  • New Alkyne and Amine Linkers for Versatile Multiple Conjugation of Oligonucleotides
  • 2021
  • Ingår i: ACS Omega. - : American Chemical Society. - 2470-1343. ; 6:1, s. 579-593
  • Tidskriftsartikel (refereegranskat)abstract
    • Oligonucleotide (ON) conjugates are increasingly important tools for various molecular diagnostics, nanotechnological applications, and for the development of nucleic acid-based therapies. Multiple labeling of ONs can further equip ON-conjugates and provide improved or additional tailored properties. Typically, the preparation of ON multiconjugates involves additional synthetic steps and/or manipulations in post-ON assembly. This report describes the simplified methodology allowing for multiple labeling of ONs on a solid support and is compatible with phosphodiester as well as phosphorothioate (PS) ONs. The current approach utilizes two novel alkyne- A nd amino-functionalized linker phosphoramidites that can be readily synthesized from a common aminodiol intermediate in three steps. The combination of new linkers provides orthogonal functionalities, which allow for multiple attachments of similar or varied moieties. The linkers are incorporated into ONs during automated solid-phase ON synthesis, and the conjugation with functional entities is achieved by either amide bond formation or by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The versatility of the approach is demonstrated by the synthesis of 5′-site ON multiconjugates with small molecules, peptides, and fatty acids as well as in the preparation of an internal peptide-ON conjugate. 
  •  
2.
  •  
3.
  • Bramsen, Jesper B., et al. (författare)
  • A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity
  • 2009
  • Ingår i: Nucleic Acids Research. - : Oxford University Press. - 0305-1048 .- 1362-4962. ; 37:9, s. 2867-2881
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of chemically synthesized short interfering RNAs (siRNAs) is currently the method of choice to manipulate gene expression in mammalian cell culture, yet improvements of siRNA design is expectably required for successful application in vivo. Several studies have aimed at improving siRNA performance through the introduction of chemical modifications but a direct comparison of these results is difficult. We have directly compared the effect of 21 types of chemical modifications on siRNA activity and toxicity in a total of 2160 siRNA duplexes. We demonstrate that siRNA activity is primarily enhanced by favouring the incorporation of the intended antisense strand during RNA-induced silencing complex (RISC) loading by modulation of siRNA thermodynamic asymmetry and engineering of siRNA 3'-overhangs. Collectively, our results provide unique insights into the tolerance for chemical modifications and provide a simple guide to successful chemical modification of siRNAs with improved activity, stability and low toxicity.
  •  
4.
  • Honcharenko, Dmytro, et al. (författare)
  • Comparison of the RNase H Cleavage Kinetics and Blood Serum Stability of the North-Conformationally Constrained and 2‘-Alkoxy Modified Oligonucleotides
  • 2007
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 46:19, s. 5635-5646
  • Tidskriftsartikel (refereegranskat)abstract
    • The RNase H cleavage potential of the RNA strand basepaired with the complementary antisense oligonucleotides (AONs) containing North−East conformationally constrained 1‘,2‘-methylene-bridged (azetidine-T and oxetane-T) nucleosides, North-constrained 2‘,4‘-ethylene-bridged (aza-ENA-T) nucleoside, and 2‘-alkoxy modified nucleosides (2‘-O-Me-T and 2‘-O-MOE-T modifications) have been evaluated and compared under identical conditions. When compared to the native AON, the aza-ENA-T modified AON/RNA hybrid duplexes showed an increase of melting temperature (ΔTm = 2.5−4 °C per modification), depending on the positions of the modified residues. The azetidine-T modified AONs showed a drop of 4−5.5 °C per modification with respect to the native AON/RNA hybrid, whereas the isosequential oxetane-T modified counterpart, showed a drop of 5−6 °C per modification. The 2‘-O-Me-T and 2‘-O-MOE-T modifications, on the other hand, showed an increased of Tm by 0.5 °C per modification in their AON/RNA hybrids. All of the partially modified AON/RNA hybrid duplexes were found to be good substrates for the RNase H mediated cleavage. The Km and Vmax values obtained from the RNA concentration-dependent kinetics of RNase H promoted cleavage reaction for all AON/RNA duplexes with identical modification site were compared with those of the reference native AON/RNA hybrid duplex. The catalytic activities (Kcat) of RNase H were found to be greater (1.4−2.6-fold) for all modified AON/RNA hybrids compared to those for the native AON/RNA duplex. However, the RNase H binding affinity (1/Km) showed a decrease (1.7−8.3-fold) for all modified AON/RNA hybrids. This resulted in less effective (1.1−3.2-fold) enzyme activity (Kcat/Km) for all modified AON/RNA duplexes with respect to the native counterpart. A stretch of five to seven nucleotides in the RNA strand (from the site of modifications in the complementary modified AON strand) was found to be resistant to RNase H digestion (giving a footprint) in the modified AON/RNA duplex. Thus, (i) the AON modification with azetidine-T created a resistant region of five to six nucleotides, (ii) modification with 2‘-O-Me-T created a resistant stretch of six nucleotides, (iii) modification with aza-ENA-T created a resistant region of five to seven nucleotide residues, whereas (iv) modification with 2‘-O-MOE-T created a resistant stretch of seven nucleotide residues. This shows the variable effect of the microstructure perturbation in the modified AON/RNA heteroduplex depending upon the chemical nature as well as the site of modifications in the AON strand. On the other hand, the enhanced blood serum as well as the 3‘-exonuclease stability (using snake venom phosphodiesterase, SVPDE) showed the effect of the tight conformational constraint in the AON with aza-ENA-T modifications in that the 3‘-exonuclease preferentially hydrolyzed the 3‘-phosphodiester bond one nucleotide away (n + 1) from the modification site (n) compared to all other modified AONs, which were 3‘-exonuclease cleaved at the 3‘-phosphodiester of the modification site (n). The aza-ENA-T modification in the AONs made the 5‘-residual oligonucleotides (including the n + 1 nucleotide) highly resistant in the blood serum (remaining after 48 h) compared to the native AON (fully degraded in 2 h). On the other hand, the 5‘-residual oligonucleotides (including the n nucleotide) in azetidine-T, 2‘-O-Me-T, and 2‘-O-MOE-T modified AONs were more stable compared to that of the native counterpart but more easily degradable than that of aza-ENA-T containing AONs.
  •  
5.
  • Honcharenko, Dmytro, 1978- (författare)
  • Conformationally Constrained Nucleosides, Nucleotides and Oligonucleotides : Design, Synthesis and Properties
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis is based on six original research publications describing synthesis, structure and physicochemical and biochemical analysis of chemically modified oligonucleotides (ONs) in terms of their potential diagnostic and therapeutic applications. Synthesis of two types of bicyclic conformationally constrained nucleosides, North-East locked 1',2'-azetidine and North locked 2',4'-aza-ENA, is described. Study of the molecular structures and dynamics of bicyclic nucleosides showed that depending upon the type of fused system they fall into two distinct categories with their respective internal dynamics and type of sugar conformation. The physicochemical properties of the nucleobases in the conformationally constrained nucleosides found to be depended on the site and ring-size of the fused system. The incorporation of azetidine modified nucleotide units into 15mer ONs lowered the affinity toward the complementary RNA. However, they performed better than previously reported isosequential 1',2'-oxetane modified analogues. Whereas aza-ENA-T modification incorporated into ONs significantly enhanced affinity to the complementary RNA. To evaluate the antisense potential of azetidine-T and aza-ENA-T modified ONs, they were subjected to RNase H promoted cleavage as well as tested towards nucleolytic degradation. Kinetic experiments showed that modified ONs recruit RNase H, however with lower enzyme efficiency due to decreased enzyme-substrate binding affinity, but with enhanced turnover number. Both, azetidine-T and aza-ENA-T modified ONs demonstrated improved 3'-exonuclease stability in the presence of snake venom phosphodiesterase and human serum compared to the unmodified sequence. Oligodeoxynucleotides (ODNs) containing pyrene-functionalized azetidine-T (Aze-pyr X) and aza-ENA-T (Aza-ENA-pyr Y) modifications showed different fluorescence properties. The X modified ODNs hybridized to the complementary DNA and RNA showed variable increase in the fluorescence intensity depending upon the nearest-neighbor at the 3'-end to X modification (dA > dG > dT > dC) with high fluorescence quantum yield. However, the Y modified ODNs showed a sensible enhancement of the fluorescence intensity only with complementary DNA. Also, the X modified ODN showed decrease (~37-fold) in the fluorescence intensity upon duplex formation with RNA containing a G nucleobase mismatch opposite to the modification site, whereas a ~3-fold increase was observed for the Y modified probe.
  •  
6.
  • Honcharenko, Dmytro, et al. (författare)
  • Modulation of Pyrene Fluorescence in DNA Probes Depends upon the Nature of the Conformationally Restricted Nucleotide
  • 2008
  • Ingår i: Journal of Organic Chemistry. - : American Chemical Society (ACS). - 0022-3263 .- 1520-6904. ; 73:7, s. 2829-2842
  • Tidskriftsartikel (refereegranskat)abstract
    • The DNA probes (ODNs) containing a 2'-N-(pyren-1-yl)-group on the conformationally locked nucleosides [2'-N-(pyren-1-yl)carbonyl-azetidine thymidine, Aze-pyr (X), and 2'-N-(pyren-1-yl)carbonyl-aza-ENA thymidine, Aza-ENA-pyr (Y)], show that they can bind to complementary RNA more strongly than to the DNA. The Aze-pyr (X) containing ODNs with the complementary DNA and RNA duplexes showed an increase in the fluorescence intensity (measured at lambda em approximately 376 nm) depending upon the nearest neighbor at the 3'-end to X [dA ( approximately 12-20-fold) > dG ( approximately 9-20-fold) > dT ( approximately 2.5-20-fold) > dC ( approximately 6-13-fold)]. They give high fluorescence quantum yields (Phi F = 0.13-0.89) as compared to those of the single-stranded ODNs. The Aza-ENA-pyr (Y)-modified ODNs, on the other hand, showed an enhancement of the fluorescence intensity only with the complementary DNA (1.4-3.9-fold, Phi F = 0.16-0.47); a very small increase in fluorescence is also observed with the complementary RNA (1.1-1.7-fold, Phi F = 0.17-0.22), depending both upon the site of the Y modification introduced as well as on the chemical nature of the nucleobase adjacent to the modification site into the ODN. The fluorescence properties, thermal denaturation experiments, absorption, and circular dichroism (CD) studies with the X- and Y-modified ODNs in the form of matched homo- and heteroduplexes consistently suggested (i) that the orientation of the pyrene moiety is outside the helix of the nucleic acid duplexes containing a dT-d/rA base pair at the 3'-end of the modification site for both X and Y types of modifications, and (ii) that the microenvironment around the pyrene moiety in the ODN/DNA and ODN/RNA duplexes is dictated by the chemical nature of the conformational constraint in the sugar moiety, as well as by the nature of neighboring nucleobases. The pyrene fluorescence emission in both X and Y types of the conformationally restricted nucleotides is found to be sensitive to a mismatched base present in the target RNA: (i) The X-modified ODN showed a decrease ( approximately 37-fold) in the fluorescence intensity (measured at lambda em approximately 376 nm) upon duplex formation with RNA containing a G nucleobase mismatch (dT-rG pair instead of dT-rA) opposite to the modification site. (ii) In contrast, the Y-modified ODN in the heteroduplex resulted in a approximately 3-fold increase in the fluorescence intensity upon dT-rG mismatch, instead of matched dT-rA pair, in the RNA strand. Our data corroborate that the pyrene moiety is intercalated in the X-modified mismatched ODN/RNA (G mismatch) heteroduplex as compared to that of the Y-modified ODN/RNA (G mismatch) heteroduplex, in which it is located outside the helix.
  •  
7.
  •  
8.
  • Karalè, Kristina, et al. (författare)
  • A study on synthesis and upscaling of 2′-o-aecm-5-methyl pyrimidine phosphoramidites for oligonucleotide synthesis
  • 2021
  • Ingår i: Molecules. - : MDPI. - 1431-5157 .- 1420-3049. ; 26:22
  • Tidskriftsartikel (refereegranskat)abstract
    • 2′-O-(N-(Aminoethyl)carbamoyl)methyl-modified 5-methyluridine (AECM-MeU) and 5-methylcytidine (AECM-MeC) phosphoramidites are reported for the first time and prepared in multigram quantities. The syntheses of AECM-MeU and AECM-MeC nucleosides are designed for larger scales (approx. 20 g up until phosphoramidite preparation steps) using low-cost reagents and minimizing chromatographic purifications. Several steps were screened for best conditions, focusing on the most crucial steps such as N3 and/or 2′-OH alkylations, which were improved for larger scale synthesis using phase transfer catalysis (PTC). Moreover, the need of chromatographic purifications was substantially reduced by employing one-pot synthesis and improved work-up strategies. © 2021 by the authors. 
  •  
9.
  • Plashkevych, Oleksandr, et al. (författare)
  • Chemical and Structural Implications of 1‘,2‘- versus 2‘,4‘- Conformational Constraints in the Sugar Moiety of Modified Thymine Nucleosides
  • 2007
  • Ingår i: Journal of Organic Chemistry. - : American Chemical Society (ACS). - 0022-3263 .- 1520-6904. ; 72:13, s. 4716-4726
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to understand how the chemical nature of the conformational constraint of the sugar moiety in ON/RNA(DNA) dictates the duplex structure and reactivity, we have determined molecular structures and dynamics of the conformationally constrained 1‘,2‘-azetidine- and 1‘,2‘-oxetane-fused thymidines, as well as their 2‘,4‘-fused thymine (T) counterparts such as LNA-T, 2‘-amino LNA-T, ENA-T, and aza-ENA-T by NMR, ab initio (HF/6-31G** and B3LYP/6-31++G**), and molecular dynamics simulations (2 ns in the explicit aqueous medium). It has been found that, depending upon whether the modification leads to a bicyclic 1‘,2‘-fused or a tricyclic 2‘,4‘-fused system, they fall into two distinct categories characterized by their respective internal dynamics of the glycosidic and the backbone torsions as well as by characteristic North-East type sugar conformation (P = 37° ± 27°, φm = 25° ± 18°) of the 1‘,2‘-fused systems, and (ii) pure North type (P = 19° ± 8°, φm = 48° ± 4°) for the 2‘,4‘-fused nucleosides. Each group has different conformational hyperspace accessible, despite the overall similarity of the North-type conformational constraints imposed by the 1‘,2‘- or 2‘,4‘-linked modification. The comparison of pKas of the 1-thyminyl aglycon as well as that of endocyclic sugar-nitrogen obtained by theoretical and experimental measurements showed that the nature of the sugar conformational constraints steer the physicochemical property (pKa) of the constituent 1-thyminyl moiety, which in turn can play a part in tuning the strength of hydrogen bonding in the basepairing.
  •  
10.
  • Varghese, Oommen P., et al. (författare)
  • Conformationally Constrained 2'-N,4'-C-Ethylene-Bridged Thymidine (Aza-ENA-T): Synthesis, Structure, Physical, and Biochemical Studies of Aza-ENA-T-Modified Oligonucleotides
  • 2006
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 128:47, s. 15173-15187
  • Tidskriftsartikel (refereegranskat)abstract
    • The 2'-deoxy-2'-N,4'-C-ethylene-bridged thymidine (aza-ENA-T) has been synthesized using a key cyclization step involving 2'-ara-trifluoromethylsufonyl-4'-cyanomethylene 11 to give a pair of 3',5'-bis-OBn- protected diastereomerically pure aza-ENA-Ts (12a and 12b) with the fused piperidino skeleton in the chair conformation, whereas the pentofuranosyl moiety is locked in the North-type conformation (7 < P < 27 degrees, 44 degrees < phi(m) < 52 degrees). The origin of the chirality of two diastereomerically pure aza-ENA-Ts was found to be due to the endocyclic chiral 2'-nitrogen, which has axial N-H in 12b and equatorial N-H in 12a. The latter is thermodynamically preferred, while the former is kinetically preferred with E-a 25.4 kcal mol(-1), which is thus far the highest observed inversion barrier at pyramidal N-H in the bicyclic amines. The 5'-O-DMTr-aza-ENA-T-3'-phosphoramidite was employed for solid-phase synthesis to give four different singly modified 15-mer antisense oligonucleotides (AONs). Their AON/RNA duplexes showed a T m increase of 2.5-4 degrees C per modification, depending upon the modification site in the AON. The relative rates of the RNase H1 cleavage of the aza-ENA-T-modified AON/RNA heteroduplexes were very comparable to that of the native counterpart, but the RNA cleavage sites of the modified AON/RNA were found to be very different. The aza-ENA-T modifications also made the AONs very resistant to 3' degradation (stable over 48 h) in the blood serum compared to the unmodified AON (fully degraded in 4 h). Thus, the aza-ENA-T modification in the AON fulfilled three important antisense criteria, compared to the native: (i) improved RNA target affinity, (ii) comparable RNase H cleavage rate, and (iii) higher blood serum stability.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy