SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hongisto Vesa) "

Sökning: WFRF:(Hongisto Vesa)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Björkblom, Benny, et al. (författare)
  • All JNKs Can Kill, but Nuclear Localization Is Critical for Neuronal Death
  • 2008
  • Ingår i: Journal of Biological Chemistry. - : American Society for Biochemistry and Molecular Biology. - 0021-9258 .- 1083-351X. ; 283:28, s. 19704-19713
  • Tidskriftsartikel (refereegranskat)abstract
    • JNKs are implicated in a range of brain pathologies and receive considerable attention as potential therapeutic targets. However, JNKs also regulate physiological and homeostatic processes. An attractive hypothesis from the drug development perspective is that distinct JNK isoforms mediate “physiological” and “pathological” responses. However, this lacks experimental evaluation. Here we investigate the isoforms, subcellular pools, and c-Jun/ATF2 targets of JNK in death of central nervous system neurons following withdrawal of trophic support. We use gene knockouts, gene silencing, subcellularly targeted dominant negative constructs, and pharmacological inhibitors. Combined small interfering RNA knockdown of all JNKs 1, 2, and 3, provides substantial neuroprotection. In contrast, knockdown or knock-out of individual JNKs or two JNKs together does not protect. This explains why the evidence for JNK in neuronal death has to date been largely pharmacological. Complete knockdown of c-Jun and ATF2 using small interfering RNA also fails to protect, casting doubt on c-Jun as a critical effector of JNK in neuronal death. Nonetheless, the death requires nuclear but not cytosolic JNK activity as nuclear dominant negative inhibitors of JNK protect, whereas cytosolic inhibitors only block physiological JNK function. Thus any one of the three JNKs is capable of mediating apoptosis and inhibition of nuclear JNK is protective.
  •  
2.
  • Björkblom, Benny, et al. (författare)
  • Constitutively Active Cytoplasmic c-Jun N-Terminal Kinase 1 Is a Dominant Regulator of Dendritic Architecture: Role of Microtubule-Associated Protein 2 as an Effector
  • 2005
  • Ingår i: Journal of Neuroscience. - : Society for Neuroscience. - 0270-6474 .- 1529-2401. ; 25:27, s. 6350-6361
  • Tidskriftsartikel (refereegranskat)abstract
    • Normal functioning of the nervous system requires precise regulation of dendritic shape and synaptic connectivity. Here, we report a severe impairment of dendritic structures in the cerebellum and motor cortex of c-Jun N-terminal kinase 1 (JNK1)-deficient mice. Using an unbiased screen for candidate mediators, we identify the dendrite-specific high-molecular-weight microtubule-associated protein 2 (MAP2) as a JNK substrate in the brain. We subsequently show that MAP2 is phosphorylated by JNK in intact cells and that MAP2 proline-rich domain phosphorylation is decreased in JNK1-/- brain. We developed compartment-targeted JNK inhibitors to define whether a functional relationship exists between the physiologically active, cytosolic pool of JNK and dendritic architecture. Using these, we demonstrate that cytosolic, but not nuclear, JNK determines dendritic length and arbor complexity in cultured neurons. Moreover, we confirm that MAP2-dependent process elongation is enhanced after activation of JNK. Using JNK1-/- neurons, we reveal a dominant role for JNK1 over ERK in regulating dendritic arborization, whereas ERK only regulates dendrite shape under conditions in which JNK activity is low (JNK1-/- neurons). These results reveal a novel antagonism between JNK and ERK, potentially providing a mechanism for fine-tuning the dendritic arbor. Together, these data suggest that JNK phosphorylation of MAP2 plays an important role in defining dendritic architecture in the brain.
  •  
3.
  • Grafström, Roland C, et al. (författare)
  • Toward the Replacement of Animal Experiments through the Bioinformatics-driven Analysis of 'Omics' Data from Human Cell Cultures
  • 2015
  • Ingår i: ATLA (Alternatives to Laboratory Animals). - : SAGE Publications. - 0261-1929 .- 2632-3559. ; 43:5, s. 325-332
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper outlines the work for which Roland Grafström and Pekka Kohonen were awarded the 2014 Lush Science Prize. The research activities of the Grafström laboratory have, for many years, covered cancer biology studies, as well as the development and application of toxicity-predictive in vitro models to determine chemical safety. Through the integration of in silico analyses of diverse types of genomics data (transcriptomic and proteomic), their efforts have proved to fit well into the recently-developed Adverse Outcome Pathway paradigm. Genomics analysis within state-of-the-art cancer biology research and Toxicology in the 21st Century concepts share many technological tools. A key category within the Three Rs paradigm is the Replacement of animals in toxicity testing with alternative methods, such as bioinformatics-driven analyses of data obtained from human cell cultures exposed to diverse toxicants. This work was recently expanded within the pan-European SEURAT-1 project (Safety Evaluation Ultimately Replacing Animal Testing), to replace repeat-dose toxicity testing with data-rich analyses of sophisticated cell culture models. The aims and objectives of the SEURAT project have been to guide the application, analysis, interpretation and storage of 'omics' technology-derived data within the service-oriented sub-project, ToxBank. Particularly addressing the Lush Science Prize focus on the relevance of toxicity pathways, a 'data warehouse' that is under continuous expansion, coupled with the development of novel data storage and management methods for toxicology, serve to address data integration across multiple 'omics' technologies. The prize winners' guiding principles and concepts for modern knowledge management of toxicological data are summarised. The translation of basic discovery results ranged from chemical-testing and material-testing data, to information relevant to human health and environmental safety.
  •  
4.
  • Kohonen, Pekka, et al. (författare)
  • Cancer Biology, Toxicology and Alternative Methods Development Go Hand-in-Hand
  • 2014
  • Ingår i: Basic & Clinical Pharmacology & Toxicology. - : Wiley. - 1742-7835 .- 1742-7843. ; 115:1, s. 50-58
  • Forskningsöversikt (refereegranskat)abstract
    • Toxicological research faces the challenge of integrating knowledge from diverse fields and novel technological developments generally in the biological and medical sciences. We discuss herein the fact that the multiple facets of cancer research, including discovery related to mechanisms, treatment and diagnosis, overlap many up and coming interest areas in toxicology, including the need for improved methods and analysis tools. Common to both disciplines, in vitro and in silico methods serve as alternative investigation routes to animal studies. Knowledge on cancer development helps in understanding the relevance of chemical toxicity studies in cell models, and many bioinformatics-based cancer biomarker discovery tools are also applicable to computational toxicology. Robotics-aided cell-based high throughput screening, microscale immunostaining techniques, and gene expression profiling analyses are common tools in cancer research, and when sequentially combined, form a tiered approach to structured safety evaluation of thousands of environmental agents, novel chemicals or engineered nanomaterials. Comprehensive tumour data collections in databases have been translated into clinically useful data, and this concept serves as template for computer-driven evaluation of toxicity data into meaningful results. Future “cancer research-inspired knowledge management” of toxicological data will aid the translation of basic discovery results and chemicals- and materials-testing data to information relevant to human health and environmental safety.
  •  
5.
  • Tararuk, Tatsiana, et al. (författare)
  • JNK1 phosphorylation of SCG10 determines microtubule dynamics and axodendritic length
  • 2006
  • Ingår i: Journal of Cell Biology. - : Rockefeller University Press. - 0021-9525 .- 1540-8140. ; 173:2, s. 265-277
  • Tidskriftsartikel (refereegranskat)abstract
    • c-Jun NH2-terminal kinases (JNKs) are essential during brain development, when they regulate morphogenic changes involving cell movement and migration. In the adult, JNK determines neuronal cytoarchitecture. To help uncover the molecular effectors for JNKs in these events, we affinity purified JNK-interacting proteins from brain. This revealed that the stathmin family microtubule-destabilizing proteins SCG10, SCLIP, RB3, and RB3′ interact tightly with JNK. Furthermore, SCG10 is also phosphorylated by JNK in vivo on sites that regulate its microtubule depolymerizing activity, serines 62 and 73. SCG10-S73 phosphorylation is significantly decreased in JNK1−/− cortex, indicating that JNK1 phosphorylates SCG10 in developing forebrain. JNK phosphorylation of SCG10 determines axodendritic length in cerebrocortical cultures, and JNK site–phosphorylated SCG10 colocalizes with active JNK in embryonic brain regions undergoing neurite elongation and migration. We demonstrate that inhibition of cytoplasmic JNK and expression of SCG10-62A/73A both inhibited fluorescent tubulin recovery after photobleaching. These data suggest that JNK1 is responsible for regulation of SCG10 depolymerizing activity and neurite elongation during brain development.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy