SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hooli S) "

Sökning: WFRF:(Hooli S)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Rees, CA, et al. (författare)
  • Derivation and validation of a novel risk assessment tool to identify children aged 2-59 months at risk of hospitalised pneumonia-related mortality in 20 countries
  • 2022
  • Ingår i: BMJ global health. - : BMJ. - 2059-7908. ; 7:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Existing risk assessment tools to identify children at risk of hospitalised pneumonia-related mortality have shown suboptimal discriminatory value during external validation. Our objective was to derive and validate a novel risk assessment tool to identify children aged 2–59 months at risk of hospitalised pneumonia-related mortality across various settings.MethodsWe used primary, baseline, patient-level data from 11 studies, including children evaluated for pneumonia in 20 low-income and middle-income countries. Patients with complete data were included in a logistic regression model to assess the association of candidate variables with the outcome hospitalised pneumonia-related mortality. Adjusted log coefficients were calculated for each candidate variable and assigned weighted points to derive the Pneumonia Research Partnership to Assess WHO Recommendations (PREPARE) risk assessment tool. We used bootstrapped selection with 200 repetitions to internally validate the PREPARE risk assessment tool.ResultsA total of 27 388 children were included in the analysis (mean age 14.0 months, pneumonia-related case fatality ratio 3.1%). The PREPARE risk assessment tool included patient age, sex, weight-for-age z-score, body temperature, respiratory rate, unconsciousness or decreased level of consciousness, convulsions, cyanosis and hypoxaemia at baseline. The PREPARE risk assessment tool had good discriminatory value when internally validated (area under the curve 0.83, 95% CI 0.81 to 0.84).ConclusionsThe PREPARE risk assessment tool had good discriminatory ability for identifying children at risk of hospitalised pneumonia-related mortality in a large, geographically diverse dataset. After external validation, this tool may be implemented in various settings to identify children at risk of hospitalised pneumonia-related mortality.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • McCollum, ED, et al. (författare)
  • Defining hypoxaemia from pulse oximeter measurements of oxygen saturation in well children at low altitude in Bangladesh: an observational study
  • 2021
  • Ingår i: BMJ open respiratory research. - : BMJ. - 2052-4439. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • WHO defines hypoxaemia, a low peripheral arterial oxyhaemoglobin saturation (SpO2), as <90%. Although hypoxaemia is an important risk factor for mortality of children with respiratory infections, the optimal SpO2 threshold for defining hypoxaemia is uncertain in low-income and middle-income countries (LMICs). We derived a SpO2 threshold for hypoxaemia from well children in Bangladesh residing at low altitude.MethodsWe prospectively enrolled well, children aged 3–35 months participating in a pneumococcal vaccine evaluation in Sylhet district, Bangladesh between June and August 2017. Trained health workers conducting community surveillance measured the SpO2 of children using a Masimo Rad-5 pulse oximeter with a wrap sensor. We used standard summary statistics to evaluate the SpO2 distribution, including whether the distribution differed by age or sex. We considered the 2.5th, 5th and 10th percentiles of SpO2 as possible lower thresholds for hypoxaemia.ResultsOur primary analytical sample included 1470 children (mean age 18.6±9.5 months). Median SpO2 was 98% (IQR 96%–99%), and the 2.5th, 5th and 10th percentile SpO2 was 91%, 92% and 94%. No child had a SpO2 <90%. Children 3–11 months had a lower median SpO2 (97%) than 12–23 months (98%) and 24–35 months (98%) (p=0.039). The SpO2 distribution did not differ by sex (p=0.959).ConclusionA SpO2 threshold for hypoxaemia derived from the 2.5th, 5th or 10th percentile of well children is higher than <90%. If a higher threshold than <90% is adopted into LMIC care algorithms then decision-making using SpO2 must also consider the child’s clinical status to minimise misclassification of well children as hypoxaemic. Younger children in lower altitude LMICs may require a different threshold for hypoxaemia than older children. Evaluating the mortality risk of sick children using higher SpO2 thresholds for hypoxaemia is a key next step.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy