SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hoppema Mario) "

Sökning: WFRF:(Hoppema Mario)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Smith, Madison M., et al. (författare)
  • Thin and transient meltwater layers and false bottoms in the Arctic sea ice pack—Recent insights on these historically overlooked features
  • 2023
  • Ingår i: Elementa: Science of the Anthropocene. - 2325-1026. ; 11:1
  • Forskningsöversikt (refereegranskat)abstract
    • The rapid melt of snow and sea ice during the Arctic summer provides a significant source of low-salinity meltwater to the surface ocean on the local scale. The accumulation of this meltwater on, under, and around sea ice floes can result in relatively thin meltwater layers in the upper ocean. Due to the small-scale nature of these upper-ocean features, typically on the order of 1 m thick or less, they are rarely detected by standard methods, but are nevertheless pervasive and critically important in Arctic summer. Observations during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in summer 2020 focused on the evolution of such layers and made significant advancements in understanding their role in the coupled Arctic system. Here we provide a review of thin meltwater layers in the Arctic, with emphasis on the new findings from MOSAiC. Both prior and recent observational datasets indicate an intermittent yet longlasting (weeks to months) meltwater layer in the upper ocean on the order of 0.1 m to 1.0 m in thickness, with a large spatial range. The presence of meltwater layers impacts the physical system by reducing bottom ice melt and allowing new ice formation via false bottom growth. Collectively, the meltwater layer and false bottoms reduce atmosphere-ocean exchanges of momentum, energy, and material.The impacts on the coupled Arctic system are far-reaching, including acting as a barrier for nutrient and gas exchange and impacting ecosystem diversity and productivity.
  •  
2.
  • Lauvset, Siv K., et al. (författare)
  • The annual update GLODAPv2.2023: the global interior ocean biogeochemical data product
  • 2024
  • Ingår i: Earth System Science Data. - 1866-3591. ; 16, s. 2047-2072
  • Tidskriftsartikel (refereegranskat)abstract
    • The Global Ocean Data Analysis Project (GLODAP) is a synthesis effort providing regular compilations of surface to bottom ocean biogeochemical bottle data, with an emphasis on seawater inorganic carbon chemistry and related variables determined through chemical analysis of seawater samples. GLODAPv2.2023 is an update of the previous version, GLODAPv2.2022 (Lauvset et al., 2022). The major changes are as follows: data from 23 new cruises were added. In addition, a number of changes were made to the data included in GLODAPv2.2022. GLODAPv2.2023 includes measurements from more than 1.4 million water samples from the global oceans collected on 1108 cruises. The data for the now 13 GLODAP core variables (salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon, total alkalinity, pH, chlorofluorocarbon-11 (CFC-11), CFC-12, CFC-113, CCl4, and SF6) have undergone extensive quality control with a focus on the systematic evaluation of bias. The data are available in two formats: (i) as submitted by the data originator but converted to World Ocean Circulation Experiment (WOCE) exchange format and (ii) as a merged data product with adjustments applied to minimize bias. For the present annual update, adjustments for the 23 new cruises were derived by comparing those data with the data from the 1085 quality-controlled cruises in the GLODAPv2.2022 data product using crossover analysis. SF6 data from all cruises were evaluated by comparison with CFC-12 data measured on the same cruises. For nutrients and ocean carbon dioxide (CO2), chemistry comparisons to estimates based on empirical algorithms provided additional context for adjustment decisions. The adjustments that we applied are intended to remove potential biases from errors related to measurement, calibration, and data-handling practices without removing known or likely time trends or variations in the variables evaluated. The compiled and adjusted data product is believed to be consistent to better than 0.005 in salinity, 1% in oxygen, 2% in nitrate, 2% in silicate, 2% in phosphate, 4µmolkg−1 in dissolved inorganic carbon, 4µmolkg−1 in total alkalinity, 0.01–0.02 in pH (depending on region), and 5% in the halogenated transient tracers. The other variables included in the compilation, such as isotopic tracers and discrete CO2 fugacity (fCO2), were not subjected to bias comparison or adjustments. The original data, their documentation, and DOI codes are available at the Ocean Carbon and Acidification Data System of NOAA National Centers for Environmental Information (NCEI), which also provides access to the merged data product. This is provided as a single global file and as four regional ones – the Arctic, Atlantic, Indian, and Pacific oceans – under https://doi.org/10.25921/zyrq-ht66 (Lauvset et al., 2023). These bias-adjusted product files also include significant ancillary and approximated data, which were obtained by interpolation of, or calculation from, measured data. This living data update documents the GLODAPv2.2023 methods and provides a broad overview of the secondary quality control procedures and results.
  •  
3.
  • Steinhoff, Tobias, et al. (författare)
  • Constraining the Oceanic Uptake and Fluxes of Greenhouse Gases by Building an Ocean Network of Certified Stations : The Ocean Component of the Integrated Carbon Observation System, ICOS-Oceans
  • 2019
  • Ingår i: Frontiers in Marine Science. - : FRONTIERS MEDIA SA. - 2296-7745. ; 6
  • Forskningsöversikt (refereegranskat)abstract
    • The European Research Infrastructure Consortium "Integrated Carbon Observation System" (ICOS) aims at delivering high quality greenhouse gas (GHG) observations and derived data products (e.g., regional GHG-flux maps) for constraining the GHG balance on a European level, on a sustained long-term basis. The marine domain (ICOS-Oceans) currently consists of 11 Ship of Opportunity lines (SOOP - Ship of Opportunity Program) and 10 Fixed Ocean Stations (FOSs) spread across European waters, including the North Atlantic and Arctic Oceans and the Barents, North, Baltic, and Mediterranean Seas. The stations operate in a harmonized and standardized way based on community-proven protocols and methods for ocean GHG observations, improving operational conformity as well as quality control and assurance of the data. This enables the network to focus on long term research into the marine carbon cycle and the anthropogenic carbon sink, while preparing the network to include other GHG fluxes. ICOS data are processed on a near real-time basis and will be published on the ICOS Carbon Portal (CP), allowing monthly estimates of CO2 air-sea exchange to be quantified for European waters. ICOS establishes transparent operational data management routines following the FAIR (Findable, Accessible, Interoperable, and Reusable) guiding principles allowing amongst others reproducibility, interoperability, and traceability. The ICOS-Oceans network is actively integrating with the atmospheric (e.g., improved atmospheric measurements onboard SOOP lines) and ecosystem (e.g., oceanic direct gas flux measurements) domains of ICOS, and utilizes techniques developed by the ICOS Central Facilities and the CP. There is a strong interaction with the international ocean carbon cycle community to enhance interoperability and harmonize data flow. The future vision of ICOS-Oceans includes ship-based ocean survey sections to obtain a three-dimensional understanding of marine carbon cycle processes and optimize the existing network design.
  •  
4.
  • Ulfsbo, Adam, 1985, et al. (författare)
  • Late summer net community production in the central Arctic Ocean using multiple approaches
  • 2014
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236. ; 28:10, s. 1129-1148
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-scale patterns of net community production (NCP) were estimated during the late summer cruise ARK-XXVI/3 (TransArc, August/September 2011) to the central Arctic Ocean. Several approaches were used based on the following: (i) continuous measurements of surface water oxygen to argon ratios (O2/Ar), (ii) underway measurements of surface partial pressure of carbon dioxide (pCO2), (iii) discrete samples of dissolved inorganic carbon, and (iv) dissolved inorganic nitrogen and phosphate. The NCP estimates agreed well within the uncertainties associated with each approach. The highest late summer NCP (up to 6mol C m−2) was observed in the marginal sea ice zone region. Low values (<1mol C m−2) were found in the sea ice-covered deep basins with a strong spatial variability. Lowest values were found in the Amundsen Basin and moderate values in the Nansen and Makarov Basins with slightly higher estimates over the Mendeleev Ridge. Our findings support a coupling of NCP to sea ice coverage and nutrient supply and thus stress a potential change in spatial and temporal distribution of NCP in a future Arctic Ocean. To follow the evolution of NCP in space and time, it is suggested to apply one or several of these approaches in shipboard investigations with a time interval of 3 to 5 years.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy