SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hopperstad Odd Sture) "

Search: WFRF:(Hopperstad Odd Sture)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Odd-Geir, Lademo, et al. (author)
  • A model for process-based crash simulation
  • 2008
  • In: International Journal of Impact Engineering. - : Elsevier BV. - 0734-743X .- 1879-3509. ; 35:5, s. 376-388
  • Journal article (peer-reviewed)abstract
    • Manufacturing of a bumper system from aluminium extrusions often involves series of forming operations performed in the soft W-temper condition, and then artificially age-hardening of the components to the material's peak hardness T6 condition. It is probable that proper finite element (FE) modelling of the crash performance of the resulting systems must rely upon a geometry obtained from an FE model following the process route, i.e., including simulation of all major forming operations. The forming operations also result in an inhomogeneous evolution of some internal variables (among others the effective plastic strain) within the shaped components. Results from tensile tests reveal that plastic straining in W-temper leads to a significant change of the T6 work-hardening curves. In addition, the tests show that the plastic pre-deformation causes a reduction of the elongation of the T6 specimens. In the present work, these process effects have been included in a user-defined elastoplastic constitutive model in LS-DYNA incorporating a state-of-the-art anisotropic yield criterion, the associated flow rule and a non-linear isotropic work hardening rule as well as some ductile fracture criteria. A first demonstration and assessment of the modelling methodology is shown by ‘through-process analysis' of two uniaxial tensile test series. The industrial use and relevance of the modelling technique is subsequently demonstrated by a case study on an industrial bumper beam system.
  •  
2.
  • Tarigopula, Venkapati, et al. (author)
  • A study of large plastic deformations in dual phase steel using digital image correlation and FE analysis
  • 2008
  • In: Experimental mechanics. - : Springer Science and Business Media LLC. - 0014-4851 .- 1741-2765. ; 48:2, s. 181-196
  • Journal article (peer-reviewed)abstract
    • Large plastic deformation in sheets made of dual phase steel DP800 is studied experimentally and numerically. Shear testing is applied to obtain large plastic strains in sheet metals without strain localisation. In the experiments, full-field displacement measurements are carried out by means of digital image correlation, and based on these measurements the strain field of the deformed specimen is calculated. In the numerical analyses, an elastoplastic constitutive model with isotropic hardening and the Cockcroft - Latham fracture criterion is adopted to predict the observed behaviour. The strain hardening parameters are obtained from a standard uniaxial tensile test for small and moderate strains, while the shear test is used to determine the strain hardening for large strains and to calibrate the fracture criterion. Finite Element (FE) calculations with shell and brick elements are performed using the non-linear FE code LS - DYNA. The local strains in the shear zone and the nominal shear stress-elongation characteristics obtained by experiments and FE simulations are compared, and, in general, good agreement is obtained. It is demonstrated how the strain hardening at large strains and the Cockcroft - Latham fracture criterion can be calibrated from the in-plane shear test with the aid of non-linear FE analyses.
  •  
3.
  • Daehli, Lars Edvard Bryhni, et al. (author)
  • Unit cell simulations and porous plasticity modelling for strongly anisotropic FCC metals
  • 2017
  • In: European journal of mechanics. A, Solids. - : Elsevier. - 0997-7538 .- 1873-7285. ; 65, s. 360-383
  • Journal article (peer-reviewed)abstract
    • The macroscopic behaviour of anisotropic porous solids made from an aggregate of spherical voids embedded in a plastically anisotropic matrix material is investigated by means of unit cell simulations. Plastic yielding of the polycrystalline matrix is governed by the anisotropic yield criterion Yld2004-18p. Generic texture components for face-centred cubic crystals resembling those that typically emerge during rolling and annealing processes are applied in the study. A numerical method for systematic prescription of external stress states is presented and employed in the unit cell calculations. To preclude shear effects in the unit cell model, the material symmetry axes are restricted to coincide with the principal stress directions. This excludes the possibility to properly study the ductile failure mechanism and the current work is thus mainly concerned with the void growth phase. Various stress states ranging from biaxial tension to highly constrained regions in the vicinity of crack tips are employed in the study. The numerical results demonstrate that the matrix anisotropy has a marked effect on the unit cell response, both in terms of void growth and stress-strain curves. Furthermore, the void shape evolves quite differently depending upon the direction of the major principal stress relative to the material axes. A heuristic extension of the Gurson model that incorporates matrix plastic anisotropy is presented and subsequently used to describe the constitutive behaviour of the porous ductile solid. Numerical data from the unit cell analyses are used as target curves in the calibration process of the porous plasticity model. A sequential least-square optimization procedure is invoked to minimize the overall discrepancy between the unit cell calculations and the homogenized response of the plastically anisotropic porous solid for all the imposed stress states. The anisotropic porous plasticity model demonstrates predictive capabilities for the range of stress states covered in this study.
  •  
4.
  • Espeseth, Vetle, et al. (author)
  • A numerical study of a size-dependent finite-element based unit cell with primary and secondary voids
  • 2021
  • In: Journal of the mechanics and physics of solids. - : Elsevier BV. - 0022-5096 .- 1873-4782. ; 157
  • Journal article (peer-reviewed)abstract
    • Aluminium alloys contain various types of intermetallic particles with different sizes, such as constituent particles and dispersoids. The main mechanism of ductile fracture in these materials is assumed to be nucleation of voids around the constituent particles, which grow during plastic deformation and eventually coalesce, resulting in material failure. The role of the dispersoids is less certain, but they are assumed to contribute in the last stages of the ductile fracture process. While the constituent particles are in the range of a couple of microns, the size of dispersoids is normally one order of magnitude smaller. To disclose the possible effects of the dispersoids on the ductile fracture process in aluminium alloys, this paper presents a numerical study of a finiteelement based unit cell, which consists of a single spherical void embedded in a matrix material represented by a porous plasticity model with void size effects. Accordingly, the single, primary void of the unit cell is assumed to have nucleated on a constituent particle, whereas the matrix porosity is assumed to account for secondary, smaller voids nucleated on dispersoids. The effects of the intrinsic length scale of the matrix material on the void growth and coalescence are studied for a range of stress states, while the initial primary and secondary void volume fractions are kept constant. The secondary voids have a substantial effect on the behaviour of the unit cell when their size is large compared to the intrinsic material length scale, but they were not found to influence the growth of the primary void. Instead, the growth of the secondary voids promotes strain softening and influences the coalescence process of the primary voids, which gradually changes mode from internal necking to loss of load-carrying capacity of the inter-void ligament.
  •  
5.
  • Jansson, Mikael, 1972- (author)
  • Hydro-mechanical forming of aluminium tubes : on constitutive modelling and process design
  • 2006
  • Doctoral thesis (other academic/artistic)abstract
    • Tube hydroforming is a forming method which has several advantages. By using pressure in combination with material feeding it is possible to manufacture products with high structural integration and tight dimensional tolerances. The forming method is especially suited for aluminium alloys which have a relatively low ductility. Finite Element simulations are used extensively in the sheet metal stamping industry, where the methodology has contributed to a better understanding of the process and the new prediction capability has significantly reduced costly die tryouts. Similarly, the tube hydroforming industry can benefit from Finite Element simulations, and this simulation methodology is the topic of this dissertation.Deep drawing and tube hydroforming have a basic difference, namely that the latter process essentially is a force controlled process. This fact, in combination with the anisotropic behaviour of aluminium tubes, enforces a need for accurate constitutive descriptions. Furthermore, the material testing needs to account for the specifics of tube hydroforming. The importance of proper material modelling is in this work shown for hydrobulging and hydroforming in a die with extensive feeding.The process parameters in hydroforming are the inner pressure and the material feeding, where a correct combination of these parameters is crucial for the success of the process. It is here shown, that Finite Element simulations together with an optimisation routine are powerful tools for estimating the process parameters in an automated procedure.Finally, the reliability and quality of the simulation results depend on how failure is evaluated, which in the case of hydroforming mainly oncerns wrinkling and strain localisation. Since tube hydroforming often is preceded by bending operations this fact also demands the criteria to be strain path independent. In this work, it is shown that the prediction of strain localisation depends on the ability to predict diffuse necking, which in turn is strongly related to the chosen constitutive model.
  •  
6.
  • Larsson, Rikard, 1982- (author)
  • On Material Modelling of High Strength Steel Sheets
  • 2012
  • Doctoral thesis (other academic/artistic)abstract
    • The work done in this thesis aims at developing and improving material models for use in industrial applications.The mechanical behaviour of three advanced high strength steel grades, Docol 600DP, Docol 1200M and HyTens 1000, has been experimentally investigated under various types of deformation, and material models of their behaviour have been developed. The origins of all these material models are experimental findings from physical tests on the materials.Sheet metal forming is an important industrial process and is used to produce a wide range of products. The continuously increasing demand on the weight to performance ratio of many products promotes the use of advanced high strength steel. In order to take full advantage of such steel, most product development is done by means of computer aided engineering, CAE. In advanced product development, the use of simulation based design, SBD, is continuously increasing. With SBD, the functionality of a product, as well as its manufacturing process, can be analysed and optimised with a minimum of physical prototype testing. Accurate numerical tools are absolutely necessary with this methodology, and the model of the material behaviour is one important aspect of such tools.This thesis consists of an introduction followed by five appended papers. In the first paper, the dual phase Docol 600DP steel and the martensitic Docol 1200M steel were subjected to deformations, both under linear and non-linear strain paths. Plastic anisotropy and hardening were evaluated and modelled using both virgin materials, i.e. as received, and materials which were pre-strained in various material directions.In the second paper, the austenitic stainless steel HyTens 1000 was subjected to deformations under various proportional strain paths and strain rates. It was experimentally shown that this material is sensitive both to dynamic and static strain ageing. A constitutive model accounting for these effects was developed, calibrated, implemented in a Finite Element software and, finally, validated on physical test data.The third paper concerns the material dispersions in batches of Docol 600DP. A material model was calibrated to a number of material batches of the same steel grade. The paper provides a statistical analysis of the resulting material parameters.The fourth paper deals with a simple modelling of distortional hardening. This type of hardening is able to represent the variation of plastic anisotropy during deformation. This is not the case with a regular isotropic hardening, where the anisotropy is fixed during deformation.The strain rate effect is an important phenomenon, which often needs to be considered in a material model. In the fifth paper, the strain rate effects in Docol 600DP are investigated and modelled. Furthermore, the strain rate effect on strain localisation is discussed.
  •  
7.
  • Marth, Stefan (author)
  • An Approach on Material Model Calibration for Modelling of Sheet Metal Deformation and Failure
  • 2021
  • Doctoral thesis (other academic/artistic)abstract
    • Sheet metals are often used in automotive and aerospace applications for safety-relevant components. Weight reduction is one possibility to reduce fuel consumption or increase the payload capacity and therewith reduce the carbondioxide emission of these trans-portation vehicles. The weight reduction can be achieved by using new sheet metal alloys and thereby reducing the sheet metals thickness. Advanced material process-ing technologies like for example the press hardening process to manufacture ultra high strength steels (UHSS) are an important contribution to weight reduction. Furthermore, the usage of many different sheet metal materials and grades, like the new generation of advanced high strength steels (AHSS) and aluminium alloys will replace further low strength steel components.To challenge the balance between safety and weight reduction, while maintaining safety, reliable and efficient engineering tools are needed. Finite Element (FE) simulations are commonly used to prove a maintained safety for parts with a decreased sheet thickness and weight. This leads to a high demand on the simulation precision of sheet metals, where an accurate prediction of the failure behaviour and the post-necking hardening of materials is needed. Therefore, an approach on material model calibration for modelling of sheet metal deformation and failure is developed. The ability for companies to predict the performance envelop of all these new sheet metal alloys and components is of great importance for the metal manufacturer as well as for the automotive industry.In this thesis work a method to characterize the elasto plastic post necking behaviour of sheet metal materials, the Stepwise Modelling Method (SMM), is presented. The method uses full field measurements of the deformation field on the surface of tensile specimen. The hardening relation is modelled as a piecewise linear relation in a step by step procedure. The linear hardening parameter is adapted to reduce the residual between experimental and calculated tensile forces. The SMM is used to characterize the post necking behaviour of a ferritic boron steel and the results are compared with the commonly used inverse modelling method. It is shown that the stepwise modelling method characterizes the true stress, true plastic strain relation in an effective and com-putational efficient way. Furthermore, the SMM is used to characterize the stress state evolution during tensile testing, which is an important factor for failure and fracture mod-elling. This method is shown in an aerospace application for the nickel based super alloy Alloy 718. A study on simulating the whole comments lifespan from blank to fractured component is presented by producing a laboratory scale UHSS-component and testing it until fracture. The component performance simulation is based on results obtained by SMM for paint baked fully hardened boron steel. To enable the post necking characterization of anisotropic sheet metals like aluminium alloys an updated SMM version based on an anisotropic plasticity model is presented and evaluated for the aluminium alloys AA6016 and AA5754. Finally, the fracture behaviour of an automotive 6000 series alu-minium alloy in different directions is presented. In this study a GISSMO failure model is calibrated based on full field measurements under different stress states and evaluated on a multi triaxiality tensile specimen.The results shown in this thesis are that the presented Stepwise Modelling Method is an effective and efficient alternative method to characterize the deformation and failure of sheet metals. Based on the results of this method plasticity and fracture models can be calibrated and used for advanced forming and component performance simulations. This can lead to reduce time and costs during the development processes of new materials and products.
  •  
8.
  • Morin, David, et al. (author)
  • A numerical study on the effect of porosity distribution on ductile failure using size-dependent finite element-based representative volume elements
  • 2023
  • In: European journal of mechanics. A, Solids. - : Elsevier BV. - 0997-7538 .- 1873-7285. ; 101
  • Journal article (peer-reviewed)abstract
    • In this work, we use the size-dependent Monchiet-Bonnet porous plasticity model to study the influence of void size distribution on ductile fracture. The size effect implies that the void growth depends on the material intrinsic length scale in addition to the plastic deformation and stress state of the material, and smaller voids grow more slowly than larger voids. Finite element-based representative volume elements (RVEs) are built where each element is given an initial porosity and initial void size according to the specified void size distribution. The RVEs are loaded plastically to fracture under different stress states to study the influence of the void size distribution on ductility. The results show that heterogeneity can trigger a macroscopic failure mode caused by localized plastic flow. The onset of localized plastic flow is sensitive to the material heterogeneity while the stress-strain response up to the point of localization is not.
  •  
9.
  • Tomstad, Asle Joachim, et al. (author)
  • On the influence of stress state on ductile fracture of two 6000-series aluminium alloys with different particle content
  • 2023
  • In: International Journal of Solids and Structures. - : Elsevier BV. - 0020-7683 .- 1879-2146. ; 269, s. 112149-
  • Journal article (peer-reviewed)abstract
    • Tension-torsion tests were conducted on two 6000-series aluminium alloys with different area fraction of con-stituent particles. The two alloys, denoted alloy A and B, have previously been characterized and found to have similar matrix material, albeit the three times higher area fraction of constituent particles in alloy B than in alloy A. Single notch tube specimens of the two alloys were subjected to fifteen proportional load paths by varying the ratio of axial force and twisting moment, probing stress states from torsion to plane-strain tension. The overall failure strain in the notch was estimated analytically based on the experimental data, whereas finite element simulations were used to determine the stress and strain fields within the notch region and to estimate the local failure strain. The experiments showed that the increased particle content led to a reduction in the local failure strain of alloy B compared with alloy A that varied from 16% to 60%, depending on the stress state, with an average reduction of 39%. While the overall trend was an increasing failure strain with decreasing stress triaxiality, significant influence of the Lode parameter was observed, and thus the increase was not monotonic. Applying a porous plasticity model, localization analyses were conducted to examine the underlying mechanisms for the complex variation of the failure strain with stress state.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view