SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Horion Stéphanie) "

Sökning: WFRF:(Horion Stéphanie)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abel, Christin, et al. (författare)
  • Contrasting ecosystem vegetation response in global drylands under drying and wetting conditions
  • 2023
  • Ingår i: Global Change Biology. - 1354-1013. ; 29:14, s. 3954-3969
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing aridity is one major consequence of ongoing global climate change and is expected to cause widespread changes in key ecosystem attributes, functions, and dynamics. This is especially the case in naturally vulnerable ecosystems, such as drylands. While we have an overall understanding of past aridity trends, the linkage between temporal dynamics in aridity and dryland ecosystem responses remain largely unknown. Here, we examined recent trends in aridity over the past two decades within global drylands as a basis for exploring the response of ecosystem state variables associated with land and atmosphere processes (e.g., vegetation cover, vegetation functioning, soil water availability, land cover, burned area, and vapor-pressure deficit) to these trends. We identified five clusters, characterizing spatiotemporal patterns in aridity between 2000 and 2020. Overall, we observe that 44.5% of all areas are getting dryer, 31.6% getting wetter, and 23.8% have no trends in aridity. Our results show strongest correlations between trends in ecosystem state variables and aridity in clusters with increasing aridity, which matches expectations of systemic acclimatization of the ecosystem to a reduction in water availability/water stress. Trends in vegetation (expressed by leaf area index [LAI]) are affected differently by potential driving factors (e.g., environmental, and climatic factors, soil properties, and population density) in areas experiencing water-related stress as compared to areas not exposed to water-related stress. Canopy height for example, has a positive impact on trends in LAI when the system is stressed but does not impact the trends in non-stressed systems. Conversely, opposite relationships were found for soil parameters such as root-zone water storage capacity and organic carbon density. How potential driving factors impact dryland vegetation differently depending on water-related stress (or no stress) is important, for example within management strategies to maintain and restore dryland vegetation.
  •  
2.
  • Abel, Christin, et al. (författare)
  • The human–environment nexus and vegetation–rainfall sensitivity in tropical drylands
  • 2020
  • Ingår i: Nature Sustainability. - : Springer Science and Business Media LLC. - 2398-9629. ; 4, s. 25-32
  • Tidskriftsartikel (refereegranskat)abstract
    • Global climate change is projected to lead to an increase in both the areal extent and degree of aridity in the world’s drylands. At the same time, the majority of drylands are located in developing countries where high population densities and rapid population growth place additional pressure on the ecosystem. Thus, drylands are particularly vulnerable to environmental changes and large-scale environmental degradation. However, little is known about the long-term functional response of vegetation to such changes induced by the interplay of complex human–environmental interactions. Here we use time series of satellite data to show how vegetation productivity in relation to water availability, which is a major aspect of vegetation functioning in tropical drylands, has changed over the past two decades. In total, one-third of tropical dryland ecosystems show significant (P < 0.05) changes in vegetation–rainfall sensitivity with pronounced differences between regions and continents. We identify population as the main driver of negative changes, especially for developing countries. This is contrasted by positive changes in vegetation–rainfall sensitivity in richer countries, probably resulting from favourable climatic conditions and/or caused by an intensification and expansion of human land management. Our results highlight geographic and economic differences in the relationship between vegetation–rainfall sensitivity and associated drivers in tropical drylands, marking an important step towards the identification, understanding and mitigation of potential negative effects from a changing world on ecosystems and human well-being.
  •  
3.
  • Abel, Christin, et al. (författare)
  • Towards improved remote sensing based monitoring of dryland ecosystem functioning using sequential linear regression slopes (SeRGS)
  • 2019
  • Ingår i: Remote Sensing of Environment. - : Elsevier BV. - 0034-4257. ; 224, s. 317-332
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a method for remote sensing based monitoring of changes in dryland ecosystem functioning based on the assumption that an altered vegetation rainfall relationship (VRR) indicates changes in vegetation biophysical processes, potentially leading to changes in ecosystem functioning. We describe the VRR through a linear regression between integrated rainfall and vegetation productivity (using NDVI as a proxy) within a combined spatio-temporal window, sequentially moved over the study area and along the temporal axis of a time series. The trend in the slope values derived from such a sequential linear regression, termed SeRGS, thus represents a measure of change in the VRR. Scenarios of land degradation, defined here as a reduction in biological productivity, which may be caused by either climatic or anthropogenic factors are simulated for the period 1970–2016 from CRU rainfall and modelled NDVI data to test and evaluate the performance of the SeRGS method in detecting degradation, and compare it against the well-known RESTREND method. We found that SeRGS showed (1) overall more pronounced trends and higher significance levels (p ≤ 0.01) in detecting degradation events and (2) an improved statistical basis for the calculation of trends in the VRR (expressed by high coefficients of determination throughout the period of analysis), which was found to increase the validity of the results produced. Through the implementation of the temporal moving window the effect of inter-annual rainfall variability on vegetation productivity was effectively reduced, thereby enabling a more exact and reliable identification of the timing of degradation events (e.g. start, maximum and end of degradation) by using a time series breakpoint analysis (BFAST). Finally, the SeRGS method was applied using real data for Senegal (seasonally integrated MODIS NDVI and CHIRPS rainfall data 2000–2016) and we discuss patterns and trends. This study provides the theoretical basis for an improved assessment of changes in dryland ecosystem functioning, which is of relevance to land degradation monitoring targeting loss of vegetation productivity.
  •  
4.
  • Horion, Stéphanie, et al. (författare)
  • Mapping European ecosystem change types in response to land-use change, extreme climate events, and land degradation
  • 2019
  • Ingår i: Land Degradation and Development. - : Wiley. - 1085-3278 .- 1099-145X. ; 30:8, s. 951-963
  • Tidskriftsartikel (refereegranskat)abstract
    • Extreme climate events and nonsustainable land use are important drivers altering the functioning of European ecosystems, resulting in loss of the services provided. Yet a consensus method for regular continental scale assessment of ecosystem condition in relation to land degradation (LD) is still lacking. Here, we propose a new remote sensing-based approach allowing for improved, repeated assessment of changing pressure on terrestrial ecosystems. On the basis of segmented trend analysis of water-use efficiency (WUE), a map of ecosystem change type (ECT) was produced over Europe for the period 1999 to 2013. Results were related to drought and change in land use and land cover and to known cases of soil degradation (LD case-studies). More than 30% of the European ecosystems experienced significant changes in WUE, of which more than 20% were categorized as abrupt. Large-scale positive reversals in WUE were observed over regions with increasing crop yield and intensification of wood production, whereas decreased WUE was observed over grassland areas coinciding with high farmland abandonment. Evidence of drought pressure on ecosystem functioning (EF) was observed, with abrupt changes in functioning observed during major European drought events. The ECTs also provided relevant information on the location and type of change in EF over the LD case studies. We conclude that mapping of gradual and abrupt changes in EF is expected to be valuable tool for ecosystem condition assessment that is essential for assessing the success of reaching the LD neutrality objectives set by the United Nations Convention to Combat Desertification.
  •  
5.
  • Tagesson, Torbern, et al. (författare)
  • A physiology-based Earth observation model indicates stagnation in the global gross primary production during recent decades
  • 2021
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 27:4, s. 836-854
  • Tidskriftsartikel (refereegranskat)abstract
    • Earth observation-based estimates of global gross primary production (GPP) are essential for understanding the response of the terrestrial biosphere to climatic change and other anthropogenic forcing. In this study, we attempt an ecosystem-level physiological approach of estimating GPP using an asymptotic light response function (LRF) between GPP and incoming photosynthetically active radiation (PAR) that better represents the response observed at high spatiotemporal resolutions than the conventional light use efficiency approach. Modelled GPP is thereafter constrained with meteorological and hydrological variables. The variability in field-observed GPP, net primary productivity and solar-induced fluorescence was better or equally well captured by our LRF-based GPP when compared with six state-of-the-art Earth observation-based GPP products. Over the period 1982–2015, the LRF-based average annual global terrestrial GPP budget was 121.8 ± 3.5 Pg C, with a detrended inter-annual variability of 0.74 ± 0.13 Pg C. The strongest inter-annual variability was observed in semi-arid regions, but croplands in China and India also showed strong inter-annual variations. The trend in global terrestrial GPP during 1982–2015 was 0.27 ± 0.02 Pg C year−1, and was generally larger in the northern than the southern hemisphere. Most positive GPP trends were seen in areas with croplands whereas negative trends were observed for large non-cropped parts of the tropics. Trends were strong during the eighties and nineties but levelled off around year 2000. Other GPP products either showed no trends or continuous increase throughout the study period. This study benchmarks a first global Earth observation-based model using an asymptotic light response function, improving simulations of GPP, and reveals a stagnation in the global GPP after the year 2000.
  •  
6.
  • Tagesson, Torbern, et al. (författare)
  • Dynamics in carbon exchange fluxes for a grazed semi-arid savanna ecosystem in West Africa
  • 2015
  • Ingår i: Agriculture, Ecosystems & Environment. - : Elsevier BV. - 1873-2305 .- 0167-8809. ; 205, s. 15-24
  • Tidskriftsartikel (refereegranskat)abstract
    • The main aim of this paper is to study land-atmosphere exchange of carbon dioxide (CO2) for semi-arid savanna ecosystems of the Sahel region and its response to climatic and environmental change. A subsidiary aim is to study and quantify the seasonal dynamics in light use efficiency (epsilon) being a key variable in scaling carbon fluxes from ground observations using earth observation data. The net ecosystem exchange of carbon dioxide (NEE) 2010-2013 was measured using the eddy covariance technique at a grazed semi-arid savanna site in Senegal, West Africa. Night-time NEE was not related to temperature, confirming that care should be taken before applying temperature response curves for hot dry semi-arid regions when partitioning NEE into gross primary productivity (GPP) and ecosystem respiration (R-eco). Partitioning was instead done using light response curves. The values of epsilon ranged between 0.02 g carbon (C) MJ(-1) for the dry season and 2.27 g C MJ(-1) for the peak of the rainy season, and its seasonal dynamics was governed by vegetation phenology, photosynthetically active radiation, soil moisture and vapor pressure deficit (VPD). The CO2 exchange fluxes were very high in comparison to other semi-arid savanna sites; half-hourly GPP and R-eco peaked at -43 mu mol CO2 m(-2) s(-1) and 20 mu mol CO2 m(-2) s(-1), and daily GPP and R-eco peaked at -15 g C m(-2) and 12 g C m(-2), respectively. Possible explanations for the high CO2 fluxes are a high fraction of C4 species, alleviated water stress conditions, and a strong grazing pressure that results in compensatory growth and fertilization effects. We also conclude that vegetation phenology, soil moisture, radiation, VPD and temperature were major components in determining the seasonal dynamics of CO2 fluxes. Despite the height of the peak of the growing season CO2 fluxes, the annual C budget (average NEE: -271 g C m(-2)) were similar to that in other semi-arid ecosystems because the short rainy season resulted in a short growing season. Global circulation models project a decrease in rainfall, an increase in temperature and a shorter growing season for the western Sahel region, and the productivity and the sink function of this semi-arid ecosystem may thus be lower in the future. (C) 2015 Elsevier B.V. All rights reserved.
  •  
7.
  • Tagesson, Torbern, et al. (författare)
  • Ecosystem properties of semiarid savanna grassland in West Africa and its relationship with environmental variability
  • 2015
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 21:1, s. 250-264
  • Tidskriftsartikel (refereegranskat)abstract
    • The Dahra field site in Senegal, West Africa, was established in 2002 to monitor ecosystem properties of semiarid savanna grassland and their responses to climatic and environmental change. This article describes the environment and the ecosystem properties of the site using a unique set of in situ data. The studied variables include hydroclimatic variables, species composition, albedo, normalized difference vegetation index (NDVI), hyperspectral characteristics (350-1800nm), surface reflectance anisotropy, brightness temperature, fraction of absorbed photosynthetic active radiation (FAPAR), biomass, vegetation water content, and land-atmosphere exchanges of carbon (NEE) and energy. The Dahra field site experiences a typical Sahelian climate and is covered by coexisting trees (similar to 3% canopy cover) and grass species, characterizing large parts of the Sahel. This makes the site suitable for investigating relationships between ecosystem properties and hydroclimatic variables for semiarid savanna ecosystems of the region. There were strong interannual, seasonal and diurnal dynamics in NEE, with high values of similar to-7.5g Cm(-2)day(-1) during the peak of the growing season. We found neither browning nor greening NDVI trends from 2002 to 2012. Interannual variation in species composition was strongly related to rainfall distribution. NDVI and FAPAR were strongly related to species composition, especially for years dominated by the species Zornia glochidiata. This influence was not observed in interannual variation in biomass and vegetation productivity, thus challenging dryland productivity models based on remote sensing. Surface reflectance anisotropy (350-1800nm) at the peak of the growing season varied strongly depending on wavelength and viewing angle thereby having implications for the design of remotely sensed spectral vegetation indices covering different wavelength regions. The presented time series of in situ data have great potential for dryland dynamics studies, global climate change related research and evaluation and parameterization of remote sensing products and dynamic vegetation models.
  •  
8.
  • Tagesson, Torbern, et al. (författare)
  • Increasing global ecosystem respiration between 1982 and 2015 from Earth observation-based modelling
  • 2024
  • Ingår i: Global Ecology and Biogeography. - 1466-822X. ; 33:1, s. 116-130
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Earth observation-based estimates of land–atmosphere exchange of carbon are essential for understanding the response of the terrestrial biosphere to climatic change and other anthropogenic forcing. Temperature, soil water content and gross primary production are the main drivers of ecosystem respiration (Reco), and the main aims of this study are to develop an Reco model driven by long-term global-scale Earth observations and to study Reco spatiotemporal dynamics 1982–2015. Location: Global scale. Time Period: 1982–2015. Major Taxa Studied: Terrestrial ecosystems. Methods: We parameterized and applied a global Reco model for 1982–2015 using novel Earth observation-based data. We studied the relationships between Reco measured at field sites globally and land surface temperature, gross primary production and soil water content. Trends 1982–2015 were quantified, and the contributions from terrestrial regions to the spatiotemporal variability were evaluated. Results: The Reco model (LGS-Reco) captured the between-site and intra- and interannual variability in field-observed Reco and soil respiration well in comparison with other Earth observation-based products. The global annual Reco was on average 105.6 ± 2.3 Pg C for 1982–2015, which is close to 105 Pg C according to residuals of the carbon exchange processes within the global carbon budgets. The trend in global terrestrial Reco 1982–2015 was 0.19 ± 0.02 Pg C y−1, with the strongest positive trends found in cropland areas, whereas negative trends were primarily observed for savannah/shrublands of Southern Africa and South America. Trends were especially strong during the eighties and nineties, but substantially smaller 1998–2015. Main Conclusions: The LGS-Reco model revealed a substantial increase in global Reco during recent decades. However, the growth rates of global Reco were slower during 1998–2015, partially explaining the reduced growth rates of atmospheric CO2 during this period. The LGR-Reco product may be an essential source for studying carbon sources and sinks and functioning of the Earth system.
  •  
9.
  • Tagesson, Torbern, et al. (författare)
  • Modelling spatial and temporal dynamics of gross primary production in the Sahel from earth-observation-based photosynthetic capacity and quantum efficiency
  • 2017
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 14:5, s. 1333-1348
  • Tidskriftsartikel (refereegranskat)abstract
    • It has been shown that vegetation growth in semi-arid regions is important to the global terrestrial CO2 sink, which indicates the strong need for improved understanding and spatially explicit estimates of CO2 uptake (gross primary production; GPP) in semi-arid ecosystems. This study has three aims: (1) to evaluate the MOD17A2H GPP (collection 6) product against GPP based on eddy covariance (EC) for six sites across the Sahel; (2) to characterize relationships between spatial and temporal variability in EC-based photosynthetic capacity (Fopt) and quantum efficiency (α) and vegetation indices based on earth observation (EO) (normalized difference vegetation index (NDVI), renormalized difference vegetation index (RDVI), enhanced vegetation index (EVI) and shortwave infrared water stress index (SIWSI)); and (3) to study the applicability of EO upscaled Fopt and α for GPP modelling purposes. MOD17A2H GPP (collection 6) drastically underestimated GPP, most likely because maximum light use efficiency is set too low for semi-arid ecosystems in the MODIS algorithm. Intra-annual dynamics in Fopt were closely related to SIWSI being sensitive to equivalent water thickness, whereas α was closely related to RDVI being affected by chlorophyll abundance. Spatial and inter-annual dynamics in Fopt and α were closely coupled to NDVI and RDVI, respectively. Modelled GPP based on Fopt and α upscaled using EO-based indices reproduced in situ GPP well for all except a cropped site that was strongly impacted by anthropogenic land use. Upscaled GPP for the Sahel 2001–2014 was 736 ± 39 g C m−2 yr−1. This study indicates the strong applicability of EO as a tool for spatially explicit estimates of GPP, Fopt and α; incorporating EO-based Fopt and α in dynamic global vegetation models could improve estimates of vegetation production and simulations of ecosystem processes and hydro-biochemical cycles.
  •  
10.
  • Tagesson, Torbern, et al. (författare)
  • Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink
  • 2020
  • Ingår i: Nature Ecology and Evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; 4, s. 202-209
  • Tidskriftsartikel (refereegranskat)abstract
    • Anthropogenic land use and land cover changes (LULCC) have a large impact on the global terrestrial carbon sink, but this effect is not well characterized according to biogeographical region. Here, using state-of-the-art Earth observation data and a dynamic global vegetation model, we estimate the impact of LULCC on the contribution of biomes to the terrestrial carbon sink between 1992 and 2015. Tropical and boreal forests contributed equally, and with the largest share of the mean global terrestrial carbon sink. CO2 fertilization was found to be the main driver increasing the terrestrial carbon sink from 1992 to 2015, but the net effect of all drivers (CO2 fertilization and nitrogen deposition, LULCC and meteorological forcing) caused a reduction and an increase, respectively, in the terrestrial carbon sink for tropical and boreal forests. These diverging trends were not observed when applying a conventional LULCC dataset, but were also evident in satellite passive microwave estimates of aboveground biomass. These datasets thereby converge on the conclusion that LULCC have had a greater impact on tropical forests than previously estimated, causing an increase and decrease of the contributions of boreal and tropical forests, respectively, to the growing terrestrial carbon sink.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy