SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Horvath TL) "

Sökning: WFRF:(Horvath TL)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Schael, S, et al. (författare)
  • Precision electroweak measurements on the Z resonance
  • 2006
  • Ingår i: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 427:5-6, s. 257-454
  • Forskningsöversikt (refereegranskat)abstract
    • We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLID experiment using a polarised beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarised asymmetries. The mass and width of the Z boson, m(Z) and Gamma(Z), and its couplings to fermions, for example the p parameter and the effective electroweak mixing angle for leptons, are precisely measured: m(Z) = 91.1875 +/- 0.0021 GeV, Gamma(Z) = 2.4952 +/- 0.0023 GeV, rho(l) = 1.0050 +/- 0.0010, sin(2)theta(eff)(lept) = 0.23153 +/- 0.00016. The number of light neutrino species is determined to be 2.9840 +/- 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, m(t) = 173(+10)(+13) GeV, and the mass of the W boson, m(W) = 80.363 +/- 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of m(t) and m(W), the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than 285 GeV at 95% confidence level. (c) 2006 Elsevier B.V. All rights reserved.
  •  
2.
  • Ahmed, M, et al. (författare)
  • A hypothalamic pathway for Augmentor α-controlled body weight regulation
  • 2022
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 119:16, s. e2200476119-
  • Tidskriftsartikel (refereegranskat)abstract
    • Augmentor α and β (Augα and Augβ) are newly discovered ligands of the receptor tyrosine kinases Alk and Ltk. Augα functions as a dimeric ligand that binds with high affinity and specificity to Alk and Ltk. However, a monomeric Augα fragment and monomeric Augβ also bind to Alk and potently stimulate cellular responses. While previous studies demonstrated that oncogenic Alk mutants function as important drivers of a variety of human cancers, the physiological roles of Augα and Augβ are poorly understood. Here, we investigate the physiological roles of Augα and Augβ by exploring mice deficient in each or both Aug ligands. Analysis of mutant mice showed that both Augα single knockout and double knockout of Augα and Augβ exhibit a similar thinness phenotype and resistance to diet-induced obesity. In the Augα-knockout mice, the leanness phenotype is coupled to increased physical activity. By contrast, Augβ-knockout mice showed similar weight curves as the littermate controls. Experiments are presented demonstrating that Augα is robustly expressed and metabolically regulated in agouti-related peptide (AgRP) neurons, cells that control whole-body energy homeostasis in part via their projections to the paraventricular nucleus (PVN). Moreover, both Alk and melanocortin receptor-4 are expressed in discrete neuronal populations in the PVN and are regulated by projections containing Augα and AgRP, respectively, demonstrating that two distinct mechanisms that regulate pigmentation operate in the hypothalamus to control body weight. These experiments show that Alk-driven cancers were co-opted from a neuronal pathway in control of body weight, offering therapeutic opportunities for metabolic diseases and cancer.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Dore, R, et al. (författare)
  • Nesfatin-1 decreases the motivational and rewarding value of food
  • 2020
  • Ingår i: Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. - : Springer Science and Business Media LLC. - 1740-634X. ; 45:1110, s. 1645-1655
  • Tidskriftsartikel (refereegranskat)abstract
    • Homeostatic and hedonic pathways distinctly interact to control food intake. Dysregulations of circuitries controlling hedonic feeding may disrupt homeostatic mechanisms and lead to eating disorders. The anorexigenic peptides nucleobindin-2 (NUCB2)/nesfatin-1 may be involved in the interaction of these pathways. The endogenous levels of this peptide are regulated by the feeding state, with reduced levels following fasting and normalized by refeeding. The fasting state is associated with biochemical and behavioral adaptations ultimately leading to enhanced sensitization of reward circuitries towards food reward. Although NUCB2/nesfatin-1 is expressed in reward-related brain areas, its role in regulating motivation and preference for nutrients has not yet been investigated. We here report that both dopamine and GABA neurons express NUCB2/nesfatin-1 in the VTA. Ex vivo electrophysiological recordings show that nesfatin-1 hyperpolarizes dopamine, but not GABA, neurons of the VTA by inducing an outward potassium current. In vivo, central administration of nesfatin-1 reduces motivation for food reward in a high-effort condition, sucrose intake and preference. We next adopted a 2-bottle choice procedure, whereby the reward value of sucrose was compared with that of a reference stimulus (sucralose + optogenetic stimulation of VTA dopamine neurons) and found that nesfatin-1 fully abolishes the fasting-induced increase in the reward value of sucrose. These findings indicate that nesfatin-1 reduces energy intake by negatively modulating dopaminergic neuron activity and, in turn, hedonic aspects of food intake. Since nesfatin-1´s actions are preserved in conditions of leptin resistance, the present findings render the NUCB2/nesfatin-1 system an appealing target for the development of novel therapeutical treatments towards obesity.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy