SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hoydis J.) "

Sökning: WFRF:(Hoydis J.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Carvalho, E. de, et al. (författare)
  • EU FP7 INFSO-ICT-317669 METIS, D3.1 Positioning of multi-node/multi-antenna technologies
  • 2013
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • This document describes the research activity in multi-node/multi-antenna technologies within METIS and positions it with respect to the state-of-the-art in the academic literature and in the standardization bodies. Based on the state-of-the-art and as well as on the METIS objectives,we set the research objectives and we group the different activities (or technology components) into research clusters with similar research objectives. The technologycomponents and the research objectives have been set to achieve an ambidextrous purpose. On one side we aim at providing the METIS system with those technological components that are a natural but non-trivial evolution of 4G. On the other side, we aim at seeking for disruptivetechnologies that could radically change 5G with respect to 4G. Moreover, we mapped the different technology components to METIS’ other activities and to the overall goals of theproject.
  •  
2.
  • Fantini, R, et al. (författare)
  • EU FP7 INFSO-ICT-317669 METIS, D3.2 First performance results for multi-node/multi-antenna transmission technologies
  • 2014
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • This deliverable describes the current results of the multi-node/multi-antenna technologies investigated within METIS and analyses the interactions within and outside Work Package 3. Furthermore, it identifies the most promising technologies based on the current state of obtained results. This document provides a brief overview of the results in its first part. The second part, namely the Appendix, further details the results, describes the simulation alignment efforts conducted in the Work Package and the interaction of the Test Cases. The results described here show that the investigations conducted in Work Package 3 are maturing resulting in valuable innovative solutions for future 5G systems.
  •  
3.
  • Björnson, Emil, et al. (författare)
  • Designing multi-user MIMO for energy efficiency : When is massive MIMO the answer?
  • 2014
  • Ingår i: IEEE Wireless Communications and Networking Conference, WCNC. - 9781479930838 ; , s. 242-247
  • Konferensbidrag (refereegranskat)abstract
    • Assume that a multi-user multiple-input multiple-output (MIMO) communication system must be designed to cover a given area with maximal energy efficiency (bits/Joule). What are the optimal values for the number of antennas, active users, and transmit power? By using a new model that describes how these three parameters affect the total energy efficiency of the system, this work provides closed-form expressions for their optimal values and interactions. In sharp contrast to common belief, the transmit power is found to increase (not decrease) with the number of antennas. This implies that energy efficient systems can operate at high signal-to-noise ratio (SNR) regimes in which the use of interference-suppressing precoding schemes is essential. Numerical results show that the maximal energy efficiency is achieved by a massive MIMO setup wherein hundreds of antennas are deployed to serve relatively many users using interference-suppressing regularized zero-forcing precoding.
  •  
4.
  • Björnson, Emil, et al. (författare)
  • Hardware impairments in large-scale MISO systems : Energy efficiency, estimation, and capacity limits
  • 2013
  • Ingår i: 2013 18th International Conference on Digital Signal Processing, DSP 2013. - : IEEE conference proceedings. - 9781467358057 ; , s. -6
  • Konferensbidrag (refereegranskat)abstract
    • The use of large-scale antenna arrays has the potential to bring substantial improvements in energy efficiency and/or spectral efficiency to future wireless systems, due to the greatly improved spatial beamforming resolution. Recent asymptotic results show that by increasing the number of antennas one can achieve a large array gain and at the same time naturally decorrelate the user channels; thus, the available energy can be focused very accurately at the intended destinations without causing much inter-user interference. Since these results rely on asymptotics, it is important to investigate whether the conventional system models are still reasonable in the asymptotic regimes. This paper analyzes the fundamental limits of large-scale multiple-input single-output (MISO) communication systems using a generalized system model that accounts for transceiver hardware impairments. As opposed to the case of ideal hardware, we show that these practical impairments create finite ceilings on the estimation accuracy and capacity of large-scale MISO systems. Surprisingly, the performance is only limited by the hardware at the single-antenna user terminal, while the impact of impairments at the large-scale array vanishes asymptotically. Furthermore, we show that an arbitrarily high energy efficiency can be achieved by reducing the power while increasing the number of antennas.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy