SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hoyt Alison M.) "

Sökning: WFRF:(Hoyt Alison M.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Malhotra, Avni, et al. (författare)
  • The landscape of soil carbon data : emerging questions, synergies and databases
  • 2019
  • Ingår i: Progress in physical geography. - : SAGE Publications. - 0309-1333 .- 1477-0296. ; 43:5, s. 707-719
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil carbon has been measured for over a century in applications ranging from understanding biogeochemical processes in natural ecosystems to quantifying the productivity and health of managed systems. Consolidating diverse soil carbon datasets is increasingly important to maximize their value, particularly with growing anthropogenic and climate change pressures. In this progress report, we describe recent advances in soil carbon data led by the International Soil Carbon Network and other networks. We highlight priority areas of research requiring soil carbon data, including (a) quantifying boreal, arctic and wetland carbon stocks, (b) understanding the timescales of soil carbon persistence using radiocarbon and chronosequence studies, (c) synthesizing long-term and experimental data to inform carbon stock vulnerability to global change, (d) quantifying root influences on soil carbon and (e) identifying gaps in model-data integration. We also describe the landscape of soil datasets currently available, highlighting their strengths, weaknesses and synergies. Now more than ever, integrated soil data are needed to inform climate mitigation, land management and agricultural practices. This report will aid new data users in navigating various soil databases and encourage scientists to make their measurements publicly available and to join forces to find soil-related solutions.
  •  
2.
  • Beer, Christian, et al. (författare)
  • Vertical pattern of organic matter decomposability in cryoturbated permafrost-affected soils
  • 2022
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 17:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Permafrost thaw will release additional carbon dioxide into the atmosphere resulting in a positive feedback to climate change. However, the mineralization dynamics of organic matter (OM) stored in permafrost-affected soils remain unclear. We used physical soil fractionation, radiocarbon measurements, incubation experiments, and a dynamic decomposition model to identify distinct vertical pattern in OM decomposability. The observed differences reflect the type of OM input to the subsoil, either by cryoturbation or otherwise, e.g. by advective water-borne transport of dissolved OM. In non-cryoturbated subsoil horizons, most OM is stabilized at mineral surfaces or by occlusion in aggregates. In contrast, pockets of OM-rich cryoturbated soil contain sufficient free particulate OM for microbial decomposition. After thaw, OM turnover is as fast as in the upper active layer. Since cryoturbated soils store ca. 450 Pg carbon, identifying differences in decomposability according to such translocation processes has large implications for the future global carbon cycle and climate, and directs further process model development.
  •  
3.
  • Fluet-Chouinard, Etienne, et al. (författare)
  • Extensive global wetland loss over the past three centuries
  • 2023
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 614:7947, s. 281-286
  • Tidskriftsartikel (refereegranskat)abstract
    • Wetlands have long been drained for human use, thereby strongly affecting greenhouse gas fluxes, flood control, nutrient cycling and biodiversity1,2. Nevertheless, the global extent of natural wetland loss remains remarkably uncertain3. Here, we reconstruct the spatial distribution and timing of wetland loss through conversion to seven human land uses between 1700 and 2020, by combining national and subnational records of drainage and conversion with land-use maps and simulated wetland extents. We estimate that 3.4 million km2 (confidence interval 2.9–3.8) of inland wetlands have been lost since 1700, primarily for conversion to croplands. This net loss of 21% (confidence interval 16–23%) of global wetland area is lower than that suggested previously by extrapolations of data disproportionately from high-loss regions. Wetland loss has been concentrated in Europe, the United States and China, and rapidly expanded during the mid-twentieth century. Our reconstruction elucidates the timing and land-use drivers of global wetland losses, providing an improved historical baseline to guide assessment of wetland loss impact on Earth system processes, conservation planning to protect remaining wetlands and prioritization of sites for wetland restoration4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy