SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hreinsdottir Sigrun) "

Sökning: WFRF:(Hreinsdottir Sigrun)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Geirsson, Halldor, et al. (författare)
  • Volcano deformation at active plate boundaries : Deep magma accumulation at Hekla volcano and plate boundary deformation in south Iceland
  • 2012
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117:B11409
  • Tidskriftsartikel (refereegranskat)abstract
    • Most magmatic systems on Earth are located at actively deforming plate boundaries. In these systems, the magmatic and plate boundary deformation signals are intertwined and must be deconvolved to properly estimate magma flux and source characteristics of the magma plumbing system. We investigate the inter-rifting and inter-seismic deformation signals at the Eastern Volcanic Zone (EVZ) - South Iceland Seismic Zone (SISZ) ridge - transform intersection and estimate the location, depth, and volume rate for magmatic sources at Hekla and Torfajokull volcanoes, which are located at the intersection. We solve simultaneously for the source parameters of the tectonic and volcanic deformation signals using a new ten-year velocity field derived from a dense network of episodic and continuous GPS stations in south Iceland. We find the intersection of the axes of the EVZ and the SISZ is located within the Torfajokull caldera, which itself is subsiding. Deformation at Hekla is statistically best described in terms of a horizontal ellipsoidal magma chamber at 24(2)(+4) km depth aligned with the volcanic system and increasing in volume by 0.017(-0.002)(+0.007) km(3) per year. A spherical magma chamber centered at 24(-2)(+5) km depth with a volume rate of 0.019(-0.002)(+0.011) km(3) per year, or a vertical pipe-shaped magma chamber between 10(-1)(+3) km and 21(-4)(+7) km with a volume rate of 0.008(-0.001)(+0.003) km(3) per year are also plausible models explaining the deformation at Hekla. All three models indicate magma accumulation in the lower crust or near the Moho under Hekla.
  •  
3.
  • Juncu, Daniel, et al. (författare)
  • Injection-induced surface deformation and seismicity at the Hellisheidi geothermal field, Iceland
  • 2020
  • Ingår i: Journal of Volcanology and Geothermal Research. - : Elsevier BV. - 0377-0273 .- 1872-6097. ; 391
  • Tidskriftsartikel (refereegranskat)abstract
    • Induced seismicity is often associated with fluid injection but only rarely linked to surface deformation. At the Hellisheidi geothermal power plant in south-west Iceland we observe up to 2 cm of surface displacements during 2011–2012, indicating expansion of the crust. The displacements occurred at the same time as a strong increase in seismicity was detected and coincide with the initial phase of geothermal wastewater reinjection at Hellisheidi. Reinjection started on September 1, 2011 with a flow rate of around 500 kg/s. Micro-seismicity increased immediately in the area north of the injection sites, with the largest seismic events in the sequence being two M4 earthquakes on October 15, 2011. Semi-continuous GPS sites installed on October 15 and 17, and on November 2, 2011 reveal a transient signal which indicates that most of the deformation occurred in the first months after the start of the injection. The surface deformation is evident in ascending TerraSAR-X data covering June 2011 to May 2012 as well. We use an inverse modeling approach and simulate both the InSAR and GPS data to find the most plausible cause of the deformation signal, investigating how surface deformation, seismicity and fluid injection may be connected to each other. We argue that fluid injection caused an increase in pore pressure which resulted in increased seismicity and fault slip. Both pore pressure increase and fault slip contribute to the surface deformation.
  •  
4.
  • Pagli, Carolina, et al. (författare)
  • Glacio-isostatic deformation around the Vatnajökull ice cap, Iceland, induced by recent climate warming : GPS observations and finite element modeling
  • 2007
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 112:B8, s. B08405-
  • Tidskriftsartikel (refereegranskat)abstract
    • [1] Glaciers in Iceland began retreating around 1890, and since then the Vatnajokull ice cap has lost over 400 km 3 of ice. The associated unloading of the crust induces a glacio-isostatic response. From 1996 to 2004 a GPS network was measured around the southern edge of Vatnajokull. These measurements, together with more extended time series at several other GPS sites, indicate vertical velocities around the ice cap ranging from 9 to 25 mm/yr, and horizontal velocities in the range 3 to 4 mm/yr. The vertical velocities have been modeled using the finite element method (FEM) in order to constrain the viscosity structure beneath Vatnajokull. We use an axisymmetric Earth model with an elastic plate over a uniform viscoelastic half-space. The observations are consistent with predictions based on an Earth model made up of an elastic plate with a thickness of 10-20 km and an underlying viscosity in the range 4-10 x 10(18) Pa s. Knowledge of the Earth structure allows us to predict uplift around Vatnajokull in the next decades. According to our estimates of the rheological parameters, and assuming that ice thinning will continue at a similar rate during this century (about 4 km 3/year), a minimum uplift of 2.5 meters between 2000 to 2100 is expected near the current ice cap edge. If the thinning rates were to double in response to global warming (about 8 km 3/year), then the minimum uplift between 2000 to 2100 near the current ice cap edge is expected to be 3.7 meters.
  •  
5.
  • Parks, Michelle M., et al. (författare)
  • 2021-2023 Unrest and Geodetic Observations at Askja Volcano, Iceland
  • 2024
  • Ingår i: GEOPHYSICAL RESEARCH LETTERS. - 0094-8276 .- 1944-8007. ; 51:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Unrest began in July 2021 at Askja volcano in the Northern Volcanic Zone (NVZ) of Iceland. Its most recent eruption, in 1961, was predominantly effusive and produced similar to 0.1 km3 lava field. The last plinian eruption at Askja occurred in 1875. Geodetic measurements between 1983 and 2021 detail subsidence of Askja, decaying in an exponential manner. At the end of July 2021, inflation was detected at Askja volcano, from GNSS observations and Sentinel-1 interferograms. The inflationary episode can be divided into two periods from the onset of inflation until September 2023. An initial period until 20 September 2021 when geodetic models suggest transfer of magma (or magmatic fluids) from within the shallowest part of the magmatic system (comprising an inflating and deflating source), potentially involving silicic magma. A following period when one source of pressure increase at shallow depth can explain the observations. Askja volcano, situated in the Northern Volcanic Zone in Iceland, has been quiet since its last eruption in 1961, with surface deformation measurements from 1983 to 2021 displaying a decaying subsidence signal within the Askja caldera. However, at the end of July 2021, the volcano began to inflate. This was detected on both GNSS and satellite observations. As of September 2023, similar to 65 cm of uplift had been measured at GNSS station OLAC. Modeling of surface deformation measurements indicates that the inflation was triggered by upward migration of melt (or magmatic fluids). At the end of July 2021, Askja volcano began to inflate-detected on both GNSS and satellite observations, ending 1983-2021 subsidence Geodetic modeling indicates upward migration of magma, feeding a magma body at an inferred depth of 2.5-3.1 km under the main Askja caldera Start of unrest was associated with magma transfer within the upper part of the system, followed by possible additional influx from depth
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy