SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hsueh Ming Feng) "

Sökning: WFRF:(Hsueh Ming Feng)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Hsueh, Ming-Feng, et al. (författare)
  • Analysis of "old" proteins unmasks dynamic gradient of cartilage turnover in human limbs
  • 2019
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 5:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Unlike highly regenerative animals, such as axolotls, humans are believed to be unable to counteract cumulative damage, such as repetitive joint use and injury that lead to the breakdown of cartilage and the development of osteoarthritis. Turnover of insoluble collagen has been suggested to be very limited in human adult cartilage. The goal of this study was to explore protein turnover in articular cartilage from human lower limb joints. Analyzing molecular clocks in the form of nonenzymatically deamidated proteins, we unmasked a position-dependent gradient (distal high, proximal low) of protein turnover, indicative of a gradient of tissue anabolism reflecting innate tissue repair capacity in human lower limb cartilages that is associated with expression of limb-regenerative microRNAs. This association shows a potential link to a capacity, albeit limited, for regeneration that might be exploited to enhance joint repair and establish a basis for human limb regeneration.
  •  
3.
  • Hsueh, Ming-Feng, et al. (författare)
  • Biomarkers and proteomic analysis of osteoarthritis.
  • 2014
  • Ingår i: Matrix Biology. - : Elsevier BV. - 1569-1802 .- 0945-053X. ; 39:Aug 30, s. 56-66
  • Forskningsöversikt (refereegranskat)abstract
    • Our friend and colleague, Dr. Dick Heinegård, contributed greatly to the understanding of joint tissue biochemistry, the discovery and validation of arthritis-related biomarkers and the establishment of methodology for proteomic studies in osteoarthritis (OA). To date, discovery of OA-related biomarkers has focused on cartilage, synovial fluid and serum. Methods, such as affinity depletion and hyaluronidase treatment have facilitated proteomics discovery research from these sources. Osteoarthritis usually involves multiple joints; this characteristic makes it easier to detect OA with a systemic biomarker but makes it hard to delineate abnormalities of individual affected joints. Although the abundance of cartilage proteins in urine may generally be lower than other tissue/sample sources, the protein composition of urine is much less complex and its collection is non-invasive thereby facilitating the development of patient friendly biomarkers. To date however, relatively few proteomics studies have been conducted in OA urine. Proteomics strategies have identified many proteins that may relate to pathological mechanisms of OA. Further targeted approaches to validate the role of these proteins in OA are needed. Herein we summarize recent proteomic studies related to joint tissues and the cohorts used; a clear understanding of the cohorts is important for this work as we expect that the decisive discoveries of OA-related biomarkers rely on comprehensive phenotyping of healthy non-OA and OA subjects. Besides the common phenotyping criteria that include, gender, age, and body mass index (BMI), it is essential to collect data on symptoms and signs of OA outside the index joints and to bolster this with objective imaging data whenever possible to gain the most precise appreciation of the total burden of disease. Proteomic studies on systemic biospecimens, such as serum and urine, rely on comprehensive phenotyping data to unravel the true meaning of the proteomic results.
  •  
4.
  • Hsueh, Ming-Feng, et al. (författare)
  • Cartilage matrix remodelling differs by disease state and joint type
  • 2017
  • Ingår i: European Cells and Materials. - 1473-2262. ; 34, s. 70-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Dramatic alterations in mechanical properties have been documented for osteoarthritic (OA) cartilage. However, the matrix composition underlying these changes has not been mapped and their aetiology is not entirely understood. We hypothesised that an understanding of the cartilage matrix heterogeneity could provide insights into the origin of these OA-related alterations. We generated serial transverse cryo sections for 7 different cartilage conditions: 2 joint sites (knee and hip), 2 disease states (healthy and OA) and 3 tissue depths (superficial, middle and deep). By laser capture microscopy, we acquired ~200 cartilage matrix specimens from territorial (T) and interterritorial (IT) regions for all 7 conditions. A standardised matrix area was collected for each condition for a total of 0.02 ± 0.001 mm3 (corresponding to 20 µg of tissue) from a total of 4800 specimens. Extracted proteins were analysed for abundance by targeted proteomics. For most proteins, a lower IT/T ratio was observed for the OA disease state and knee joint type. A major cause of the altered IT/T ratios was the decreased protein abundance in IT regions. The collagenase-derived type III collagen neo-epitope, indicative of collagen proteolysis, was significantly more abundant in OA cartilage. In addition, it was enriched on average of 1.45-fold in IT relative to T matrix. These results were consistent with an elevated proteolysis in IT regions of OA cartilage, due to degenerative influences originating from synovial tissue and/or produced locally by chondrocytes. In addition, they offered direct evidence for dynamic remodelling of cartilage and provided a cogent biochemical template for understanding the alterations of matrix mechanical properties.
  •  
5.
  • Hsueh, Ming Feng, et al. (författare)
  • Elucidating the Molecular Composition of Cartilage by Proteomics
  • 2016
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 15:2, s. 374-388
  • Tidskriftsartikel (refereegranskat)abstract
    • Articular cartilage consists of chondrocytes and two major components, a collagen-rich framework and highly abundant proteoglycans. Most prior studies defining the zonal distribution of cartilage have extracted proteins with guanidine-HCl. However, an unextracted collagen-rich residual is left after extraction. In addition, the high abundance of anionic polysaccharide molecules extracted from cartilage adversely affects the chromatographic separation. In this study, we established a method for removing chondrocytes from cartilage sections with minimal extracellular matrix protein loss. The addition of surfactant to guanidine-HCl extraction buffer improved protein solubility. Ultrafiltration removed interference from polysaccharides and salts. Almost four-times more collagen peptides were extracted by the in situ trypsin digestion method. However, as expected, proteoglycans were more abundant within the guanidine-HCl extraction. These different methods were used to extract cartilage sections from different cartilage layers (superficial, intermediate, and deep), joint types (knee and hip), and disease states (healthy and osteoarthritic), and the extractions were evaluated by quantitative and qualitative proteomic analyses. The results of this study led to the identifications of the potential biomarkers of osteoarthritis (OA), OA progression, and the joint specific biomarkers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy