SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hu YuKun) "

Sökning: WFRF:(Hu YuKun)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  •  
3.
  • Hu, Yukun, et al. (författare)
  • Characterization of flue gas in oxy-coal combustion processes for CO2 capture
  • 2012
  • Ingår i: Applied Energy. - : Elsevier. - 0306-2619 .- 1872-9118. ; 90:1, s. 113-121
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxy-coal combustion is one of the technical solutions for mitigating CO2 in thermal power plants. For designing a technically viable and economically effective CO2 capture process, effects by coals and configurations of flue gas cleaning steps are of importance. In this paper, characterization of the flue gas recycle (FGR) is conducted for an oxy-coal combustion process. Different configurations of FGR as well as cleaning units including electrostatic precipitators (ESP), flue gas desulfurization (FGD), selective catalytic reduction (SCR) deNOx and flue gas condensation (FGC) are studied for the oxy-coal combustion process. In addition, other important parameters such as FGR rate and FGR ratio, flue gas compositions, and load of flue gas cleaning units are analyzed based on coal properties and plant operational conditions.
  •  
4.
  • Hu, Yukun (författare)
  • CO2 capture from oxy-fuel combustion power plants
  • 2011
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • To mitigate the global greenhouse gases (GHGs) emissions, carbon dioxide (CO2) capture and storage (CCS) has the potential to play a significant role for reaching mitigation target. Oxy-fuel combustion is a promising technology for CO2 capture in power plants. Advantages compared to CCS with the conventional combustion technology are: high combustion efficiency, flue gas volume reduction, low fuel consumption, near zero CO2 emission, and less nitrogen oxides (NOx) formation can be reached simultaneously by using the oxy-fuel combustion technology. However, knowledge gaps relating to large scale coal based and natural gas based power plants with CO2 capture still exist, such as combustors and boilers operating at higher temperatures and design of CO2 turbines and compressors. To apply the oxy-fuel combustion technology on power plants, much work is focused on the fundamental and feasibility study regarding combustion characterization, process and system analysis, and economic evaluation etc. Further studies from system perspective point of view are highlighted, such as the impact of operating conditions on system performance and on advanced cycle integrated with oxy-fuel combustion for CO2 capture. In this thesis, the characterization for flue gas recycle (FGR) was theoretically derived based on mass balance of combustion reactions, and system modeling was conducted by using a process simulator, Aspen Plus. Important parameters such as FGR rate and ratio, flue gas composition, and electrical efficiency etc. were analyzed and discussed based on different operational conditions. An advanced evaporative gas turbine (EvGT) cycle with oxy-fuel combustion for CO2 capture was also studied. Based on economic indicators such as specific investment cost (SIC), cost of electricity (COE), and cost of CO2avoidance (COA), economic performance was evaluated and compared among various system configurations. The system configurations include an EvGT cycle power plant without CO2 capture, an EvGT cycle power plant with chemical absorption for CO2 capture, and a combined cycle power plant. The study shows that FGR ratio is of importance, which has impact not only on heat transfer but also on mass transfer in the oxy-coal combustion process. Significant reduction in the amount of flue gas can be achieved due to the flue gas recycling, particularly for the system with more prior upstream recycle options. Although the recycle options have almost no effect on FGR ratio, flue gas flow rate, and system electrical efficiency, FGR options have significant effects on flue gas compositions, especially the concentrations of CO2 and H2O, and heat exchanger duties. In addition, oxygen purity and water/gas ratio, respectively, have an optimum value for an EvGT cycle power plant with oxy-fuel combustion. Oxygen purity of 97 mol% and water/gas ratio of 0.133 can be considered as the optimum values for the studied system. For optional operating conditions of flue gas recycling, the exhaust gas recycled after condensing (dry recycle) results in about 5 percentage points higher electrical efficiency and about 45 % more cooling water consumption comparing with the exhaust gas recycled before condensing (wet recycle). The direct costs of EvGT cycle with oxy-fuel combustion are a little higher than the direct costs of EvGT cycle with chemical absorption. However, as plant size is larger than 60 MW, even though the EvGT cycle with oxy-fuel combustion has a higher COE than the EvGT cycle with chemical absorption, the EvGT cycle with oxy-fuel combustion has a lower COA. Further, compared with others studies of natural gas combined cycle (NGCC), the EvGT system has a lower COE and COA than the NGCC system no matter which CO2 capture technology is integrated. 
  •  
5.
  • Hu, Yukun, et al. (författare)
  • Effects of flue gas recycle on oxy-coal power generation systems
  • 2012
  • Ingår i: Applied Energy. - : Elsevier BV. - 0306-2619 .- 1872-9118. ; 97, s. 255-263
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper examined and assessed various configuration options about emission removal including particles, SO x and NO x in an oxy-coal combustion system for CO 2 capture. A performance analysis was conducted in order to understand the impacts of those options concerning process design, process operation and system efficiency. Results show that different flue gas recycle options have clear effects on the emissivity and absorptivity of radiating gases in boiler due to the change of flue gas compositions. The maximum difference amongst various options can be up to 15% and 20% for emissivity and absorptivity respectively. As a result, the heat transfer by radiation can vary about 20%. The recycle options also have impacts on the design of air heater and selective-catalytic-reduction (SCR) preheater. This is due to that the largely varied operating temperatures in different options may result in different required areas of heat exchangers. In addition, the dew point of flue gas and the boiler efficiency are affected by the configurations of flue gas recycle as well.
  •  
6.
  •  
7.
  • Hu, Yukun, et al. (författare)
  • Integration of Evaporative Gas Turbine with Oxy-Fuel Combustion for Carbon Dioxide Capture
  • 2010
  • Ingår i: International Journal of Green Energy. - : Informa UK Limited. - 1543-5075 .- 1543-5083. ; 7:6, s. 615-631
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper studied the integration of Evaporative Gas Turbine (EvGT) cycle with oxy-fuel combustion for CO2 capture. The impact of key parameters on system electrical efficiency, such as the oxygen purity, Water/Gas ratio (W/G) has been investigated concerning thermal efficiency. The performance of dry recycle and wet recycle also has be analyzed and compared. Simulation results shows that: (1) 97% can be considered as the optimum oxygen purity taking into account the trade-off between the air separation unit (ASU) consumption penalty of producing higher-purity oxygen and electrical efficiency; (2) there" exists an optimum point of W/G for both EvGT and EvGT combined with oxy-fuel combustion CO2 capture technology; (3) dry recycle has a" considerably higher electrical efficiency comparing with wet recycle, but more cooled water can be saved in the wet recycle. The performance of EvGT cycle was also compared to the combined cycle (CC) when CO2 capture was considered. The comparison shows that CC has a higher net power output and electrical efficiency than the EvGT cycle no matter if combined with oxy-fuel combustion CO2 capture technology or not.
  •  
8.
  • Hu, Yukun, et al. (författare)
  • Numerical investigation of heat transfer characteristics in utility boilers of oxy-coal combustion
  • 2014
  • Ingår i: Applied Energy. - : Elsevier BV. - 0306-2619 .- 1872-9118. ; 130, s. 543-551
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxy-coal combustion has different flue gas composition from the conventional air-coal combustion. The different composition further results in different properties, such as the absorption coefficient, emissivity, and density, which can directly affect the heat transfer in both radiation and convection zones of utility boilers. This paper numerically studied a utility boiler of oxy-coal combustion and compares with air-coal combustion in terms of flame profile and heat transferred through boiler side walls in order to understand the effects of different operating conditions on oxy-coal boiler retrofitting and design. Based on the results, it was found that around 33 vol% of effective O-2 concentration ([O-2](effective)) the highest flame temperature and total heat transferred through boiler side walls in the oxy-coal combustion case match to those in the air-coal combustion case most; therefore, the 33 vol% of [O-2](effective) could result in the minimal change for the oxy-coal combustion retrofitting of the existing boiler. In addition, the increase of the moisture content in the flue gas has little impact on the flame temperature, but results in a higher surface incident radiation on boiler side walls. The area of heat exchangers in the boiler was also investigated regarding retrofitting. If boiler operates under a higher [O-2](effective), to rebalance the load of each heat exchanger in the boiler, the feed water temperature after economizer can be reduced or part of superheating surfaces can be moved into the radiation zone to replace part of the evaporators.
  •  
9.
  • Hu, YuKun, et al. (författare)
  • Numerical simulation of radiation intensity of oxy-coal combustion with flue gas recirculation
  • 2013
  • Ingår i: International Journal of Greenhouse Gas Control. - : Elsevier BV. - 1750-5836 .- 1878-0148. ; 17, s. 473-480
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxy-fuel combustion is one of potential technologies for carbon dioxide (CO2) capture in fossil fuel fired power plants. Characterization of flue gas composition in the oxy-fuel combustion differs from that of conventional air-coal combustion, which results in the change of radiative heat transfer in combustion processes. This paper presents a numerical study of radiation intensity on lateral walls based on the experimental results of a 0.5MW combustion test facility (CTF). Differences in the oxy-coal combustion are analyzed, such as flue gas recycle, absorption coefficient and radiation intensity. The simulation results show that an effective O2 concentration ([O2]effective) between 29 and 33vol% (equivalent to the flue gas recycle ratio of 72-69%) constitutes a reasonable range, within this range the behavior of oxy-coal combustion is similar to air-coal combustion. Compared with the air-coal combustion, the lower limit (29vol%) of this range results in a similar radiative heat flux at the region closed to the burner, but a lower radiative heat flux in the downstream region of the CTF; the upper limit (33vol%) of this range results in a higher radiative heat flux at the region closed to the burner, while a similar radiative heat flux in the downstream region of the CTF.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy