SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hua Yanyu) "

Sökning: WFRF:(Hua Yanyu)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cedervall, Jessica, et al. (författare)
  • Neutrophil Extracellular Traps Accumulate in Peripheral Blood Vessels and Compromise Organ Function in Tumor-Bearing Animals
  • 2015
  • Ingår i: Cancer Research. - 0008-5472 .- 1538-7445. ; 75:13, s. 2653-2662
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer produces a variety of collateral effects in patients beyond the malignancy itself, including threats to distal organ functions. However, the basis for such effects, associated with either primary or metastatic tumors, are generally poorly understood. In this study, we show how heart and kidney vascular function is impaired by neutrophils that accumulate in those tissues as a result of tumor formation in two different transgenic mouse models of cancer (RIP1-Tag2 model of insulinoma and MMTV-PyMT model of breast cancer). Neutrophil depletion by systemic administration of an anti-Gr1 antibody improved vascular perfusion and prevented vascular leakage in kidney vessels. We also observed the accumulation of platelet-neutrophil complexes, a signature of neutrophil extracellular traps (NET), in the kidneys of tumor-bearing mice that were completely absent from healthy nontumor-bearing littermates. NET accumulation in the vasculature was associated with upregulation of the proinflammatory adhesion molecules ICAM-1, VCAM-1, and E-selectin, as well as the proinflammatory cytokines IL1 beta, IL6, and the chemokine CXCL1. Administering DNase I to dissolve NETs, which have a high DNA content, restored perfusion in the kidney and heart to levels seen in nontumor-bearing mice, and also prevented vessel leakage in the blood vasculature of these organs. Taken together, our findings strongly suggest that NETs mediate the negative collateral effects of tumors on distal organs, acting to impair vascular function, and to heighten inflammation at these sites.
  •  
2.
  • Li, Jinghua, et al. (författare)
  • Effects of dissolved oxygen on the growth performance, haematological parameters, antioxidant responses and apoptosis of juvenile GIFT (Oreochromis niloticus)
  • 2020
  • Ingår i: Aquaculture Research. - : Hindawi Limited. - 1355-557X .- 1365-2109. ; 51:8, s. 3079-3090
  • Tidskriftsartikel (refereegranskat)abstract
    • This study investigated the effects of different dissolved oxygen (DO) levels on the growth performance, antioxidant response and apoptosis of juvenile GIFT (genetically improved farmed tilapia, Oreochromis niloticus). GIFT were fed with five DO levels (1, 2, 3, 4 and 5 mg/L) for 60 days, and the results showed that the final body weight, weight gain rate, specific growth rate and crude protein and crude lipid contents of the fish muscle increased at 5 mg/L DO. The activities of the antioxidant and digestive enzymes were significantly up-regulated with increasing DO levels. However, the haemoglobin content, number of red blood cells, malondialdehyde content, transaminase activities, glucose content and lactic acid levels decreased at higher DO levels. Furthermore, the cardiomyocyte apoptotic index was significantly decreased with increasing DO levels. Our results show that 5 mg/L DO improved growth performance, promoted antioxidant enzyme activities and reduced liver damage in GIFT.
  •  
3.
  • Xie, Yuan, et al. (författare)
  • Key molecular alterations in endothelial cells in human glioblastoma uncovered through single-cell RNA sequencing
  • 2021
  • Ingår i: JCI Insight. - : American Society For Clinical Investigation. - 2379-3708. ; 6:15
  • Tidskriftsartikel (refereegranskat)abstract
    • Passage of systemically delivered pharmacological agents into the brain is largely blocked by the blood-brain-barrier (BBB), an organotypic specialization of brain endothelial cells (ECs). Tumor vessels in glioblastoma (GBM), the most common malignant brain tumor in humans, are abnormally permeable, but this phenotype is heterogeneous and may differ between the tumor's center and invasive front. Here, through single-cell RNA sequencing (scRNA-seq) of freshly isolated ECs from human glioblastoma and paired tumor peripheral tissues, we have constructed a molecular atlas of human brain ECs providing unprecedented molecular insight into the heterogeneity of the human BBB and its molecular alteration in glioblastoma. We identified 5 distinct EC phenotypes representing different states of EC activation and BBB impairment, and associated with different anatomical locations within and around the tumor. This unique data resource provides key information for designing rational therapeutic regimens and optimizing drug delivery.
  •  
4.
  • Xie, Yuan, et al. (författare)
  • Wnt signaling regulates MFSD2A-dependent drug delivery through endothelial transcytosis in glioma
  • 2023
  • Ingår i: Neuro-Oncology. - : Oxford University Press. - 1522-8517 .- 1523-5866. ; 25:6, s. 1073-1084
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Systemic delivery of anti-tumor therapeutic agents to brain tumors is thwarted by the blood-brain barrier (BBB), an organotypic specialization of brain endothelial cells (ECs). A failure of pharmacological compounds to cross BBB is one culprit for the dismal prognosis of glioblastoma (GBM) patients. Identification of novel vascular targets to overcome the challenges posed by the BBB in tumors for GBM treatment is urgently needed.Methods: Temozolomide (TMZ) delivery was investigated in CT2A and PDGFB-driven RCAS/tv-a orthotopic glioma models. Transcriptome analysis was performed on ECs from murine gliomas. Mfsd2a deficient, Cav1 deficient, and Mfsd2a EC-specific inducible mice were developed to study the underlying molecular mechanisms.Results: We demonstrated that inhibiting Wnt signaling by LGK974 could increase TMZ delivery and sensitize glioma to chemotherapy in both murine glioma models. Transcriptome analysis of ECs from murine gliomas revealed that Wnt signaling inhibition enhanced vascular transcytosis as indicated by the upregulation of PLVAP and downregulation of MFSD2A. Mfsd2a deficiency in mice enhances TMZ delivery in tumors, whereas constitutive expression of Mfsd2a in ECs suppresses the enhanced TMZ delivery induced by Wnt pathway inhibition in murine glioma. In addition, Wnt signaling inhibition enhanced caveolin-1 (Cav1)-positive caveolae-mediated transcytosis in tumor ECs. Moreover, Wnt signaling inhibitor or Mfsd2a deficiency fails to enhance TMZ penetration in tumors from Cav1-deficient mice.Conclusions: These results demonstrated that Wnt signaling regulates MFSD2A-dependent TMZ delivery through a caveolae-mediated EC transcytosis pathway. Our findings identify Wnt signaling as a promising therapeutic target to improve drug delivery for GBM treatment.
  •  
5.
  • Zhang, Yanyu, et al. (författare)
  • 1p/19q co-deletion status is associated with distinct tumor-associated macrophage infiltration in IDH mutated lower-grade gliomas
  • 2021
  • Ingår i: Cellular Oncology. - : Springer. - 2211-3428 .- 2211-3436. ; 44:1, s. 193-204
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Tumor-associated macrophages (TAM)s are critical regulators of glioma progression. As yet, however, TAMs in isocitrate dehydrogenase (IDH) mutated lower-grade gliomas (LGGs) have not been thoroughly investigated. The aim of this study was to determine whether 1p/19q co-deletion status affects the TAM phenotype or its prevalence in IDH mutated LGGs. Methods TAMs in IDH mutated LGGs were analyzed using transcriptome data from 230 samples in the TCGA database in combination with transcriptome data from single-cell RNA sequencing of IDH-mutated LGGs. Proteins potentially involved in TAM regulation were examined by immuno-staining in primary LGG samples harboring IDH mutations. Essential signaling pathways regulating TAM phenotypes were investigated in a glioma mouse model using small molecule inhibitors. Results Most of the TAMs in IDH-mutated LGGs expressed the M1 activation markers CD86 and TNF, whereas a subset of individual TAMs co-expressed both M1 and M2-related markers. Bioinformatics analysis in combination with immuno-staining of IDH-mutated patient samples revealed higher amounts of TAMs expressing M2-related markers in 1p/19q non-codeletion IDH-mutated LGGs compared to 1p/19q codeletion LGGs. The levels of transforming growth factor beta 1 (TGF beta 1) and macrophage colony-stimulating factor (M-CSF) were significantly higher in 1p/19q non-codeletion LGGs than in 1p/19q codeletion LGGs. M-CSF and TGF beta 1 signal inhibition decreased tumor growth and modulated the TAM phenotype in a glioma mouse model. Conclusions Our data indicate that 1p/19q co-deletion status relates to distinct TAM infiltration in gliomas, which is likely mediated by M-CSF and TGF beta 1 signaling. M-CSF and TGF beta 1 signaling may play a pivotal role in regulating the TAM phenotype in glioma.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy