SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Huang Dongmei) "

Sökning: WFRF:(Huang Dongmei)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hu, Jinhong, et al. (författare)
  • Safety and immunogenicity of a malaria vaccine, Plasmodium falciparum AMA-1/MSP-1 chimeric protein formulated in montanide ISA 720 in healthy adults
  • 2008
  • Ingår i: PLOS ONE. - : PLOS. - 1932-6203. ; 3:4
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The P. falciparum chimeric protein 2.9 (PfCP-2.9) consisting of the sequences of MSP1-19 and AMA-1 (III) is a malaria vaccine candidate that was found to induce inhibitory antibodies in rabbits and monkeys. This was a phase I randomized, single-blind, placebo-controlled, dose-escalation study to evaluate the safety and immunogenicity of the PfCP-2.9 formulated with a novel adjuvant Montanide ISA720. Fifty-two subjects were randomly assigned to 4 dose groups of 10 participants, each receiving the test vaccine of 20, 50, 100, or 200 microg respectively, and 1 placebo group of 12 participants receiving the adjuvant only.METHODS AND FINDINGS: The vaccine formulation was shown to be safe and well-tolerated, and none of the participants withdrew. The total incidence of local adverse events (AEs) was 75%, distributed among 58% of the placebo group and 80% of those vaccinated. Among the vaccinated, 65% had events that were mild and 15% experienced moderate AEs. Almost all systemic adverse reactions observed in this study were graded as mild and required no therapy. The participants receiving the test vaccine developed detectable antibody responses which were boosted by the repeated vaccinations. Sixty percent of the vaccinated participants had high ELISA titers (>1:10,000) of antigen-specific antibodies which could also recognize native parasite proteins in an immunofluorescence assay (IFA).CONCLUSION: This study is the first clinical trial for this candidate and builds on previous investigations supporting PfCP-2.9/ISA720 as a promising blood-stage malaria vaccine. Results demonstrate safety, tolerability (particularly at the lower doses tested) and immunogenicity of the formulation. Further clinical development is ongoing to explore optimizing the dose and schedule of the formulation to decrease reactogenicity without compromising immunogenicity.TRIAL REGISTRATION: Chinese State Food and Drug Administration (SFDA) 2002SL0046; Controlled-Trials.com ISRCTN66850051 [66850051].
  •  
2.
  • Lin, Zongxing, et al. (författare)
  • Using Photonic Crystal Microrings to Mitigate Raman-Kerr Effects Competition for Soliton Microcomb Generation
  • 2024
  • Ingår i: Journal of Lightwave Technology. - : Institute of Electrical and Electronics Engineers (IEEE). - 0733-8724 .- 1558-2213. ; 42:1, s. 268-275
  • Tidskriftsartikel (refereegranskat)abstract
    • In nonlinear microresonators with strong stimulated Raman scattering effect, it is difficult if not impossible to generate Kerr soliton microcombs with a small free spectral range (FSR) (< 100 GHz) due to the competition between the Raman and Kerr effects. In this article, we overcome this limitation by using odd-period photonic crystal microrings (PCMs). Numerical simulations on the silicon-on-insulator (SOI) PCM show that a small frequency shift (5 GHz) induced by the photonic crystal structure can moderately suppress the Raman effect, such that chaotic microcombs with a small FSR can be generated. With a larger frequency shift (e.g., >= 10 GHz), the Raman effect is significantly suppressed, and the soliton microcombs can be generated. For comparison, without the frequency shift, only Raman lasing can be achieved in a conventional microring. To investigate the applicability of the proposed method in other material platforms, we carried out simulations for the aluminium nitride (AlN) PCM. The results are comparable to those obtained on the SOI PCM. Our method opens a new approach to the generation of small FSR Kerr soliton microcombs in microresonators with strong Raman effect, which is important for expanding the available nonlinear platforms and applications such as telecommunications, radio-frequency photonics, and astronomical spectrographs.
  •  
3.
  • Wang, Sheng, et al. (författare)
  • De Novo Sequence and Copy Number Variants Are Strongly Associated with Tourette Disorder and Implicate Cell Polarity in Pathogenesis
  • 2018
  • Ingår i: Cell Reports. - : CELL PRESS. - 2211-1247. ; 24:13, s. 3441-
  • Tidskriftsartikel (refereegranskat)abstract
    • We previously established the contribution of de novo damaging sequence variants to Tourette disorder (TD) through whole-exome sequencing of 511 trios. Here, we sequence an additional 291 TD trios and analyze the combined set of 802 trios. We observe an overrepresentation of de novo damaging variants in simplex, but not multiplex, families; we identify a high-confidence TD risk gene, CELSR3 (cadherin EGF LAG seven-pass G-type receptor 3); we find that the genes mutated in TD patients are enriched for those related to cell polarity, suggesting a common pathway underlying pathobiology; and we confirm a statistically significant excess of de novo copy number variants in TD. Finally, we identify significant overlap of de novo sequence variants between TD and obsessive-compulsive disorder and de novo copy number variants between TD and autism spectrum disorder, consistent with shared genetic risk.
  •  
4.
  • Wu, Biying, et al. (författare)
  • Megakaryocytes Mediate Hyperglycemia-Induced Tumor Metastasis
  • 2021
  • Ingår i: Cancer Research. - : AMER ASSOC CANCER RESEARCH. - 0008-5472 .- 1538-7445. ; 81:21, s. 5506-5522
  • Tidskriftsartikel (refereegranskat)abstract
    • High blood glucose has long been established as a risk factor for tumor metastasis, yet the molecular mechanisms underlying this association have not been elucidated. Here we describe that hyperglycemia promotes tumor metastasis via increased platelet activity. Administration of glucose, but not fructose, reprogrammed the metabolism of megakaryocytes to indirectly prime platelets into a prometastatic phenotype with increased adherence to tumor cells. In megakaryocytes, a glucose metabolism-related gene array identified the mitochondrial molecular chaperone glucose-regulated protein 75 (GRP75) as a trigger for platelet activation and aggregation by stimulating the Ca2+-PKC alpha pathway. Genetic depletion of Glut1 in megakaryocytes blocked MYC-induced GRP75 expression. Pharmacologic blockade of platelet GRP75 compromised tumor-induced platelet activation and reduced metastasis. Moreover, in a pilot clinical study, drinking a 5% glucose solution elevated platelet GRP75 expression and activated platelets in healthy volunteers. Platelets from these volunteers promoted tumor metastasis in a plateletadoptive transfer mouse model. Together, under hyperglycemic conditions, MYC-induced upregulation of GRP75 in megakaryocytes increases platelet activation via the Ca2+-PKC alpha pathway to promote cancer metastasis, providing a potential new therapeutic target for preventing metastasis. Significance: This study provides mechanistic insights into a glucose-megakaryocyte-platelet axis that promotes metastasis and proposes an antimetastatic therapeutic approach by targeting the mitochondrial protein GRP75.
  •  
5.
  • Zhou, Yin, et al. (författare)
  • Inflammation and Apoptosis: Dual Mediator Role for Toll-like Receptor 4 in the Development of Necrotizing Enterocolitis
  • 2017
  • Ingår i: Inflammatory Bowel Diseases. - : LIPPINCOTT WILLIAMS & WILKINS. - 1078-0998 .- 1536-4844. ; 23:1, s. 44-56
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Necrotizing enterocolitis (NEC) is the leading cause of neonatal gastrointestinal mortality; effective interventions are lacking with limited understanding of the pathogenesis of NEC. The importance of Toll-like receptor 4 (TLR4) signaling in NEC is well documented; however, the potential mechanisms that regulate enterocyte inflammation and apoptosis remain unclear. The aim of this study was to characterize the role of TLR4-mediated inflammation and apoptosis in the development of NEC and to determine the major apoptotic pathways and regulators in the process. Methods: TLR4-deficient C57BL/10ScNJ mice and lentivirus-mediated stable TLR4-silent cell line (IEC-6) were used. NEC was induced by formula gavage, cold, hypoxia, combined with lipopolysaccharide in vivo or lipopolysaccharide stimulation in vitro. Enterocyte apoptosis was evaluated by TUNEL or Annexin analysis. The expression of TLR4, caspase3, caspase8, caspase9, Bip, Bax, Bcl-2, and RIP was detected by Western blot and immunofluorescence. Inflammatory factors such as tumor necrosis factor-a and interleukin-2 were examined by Luminex. Results: Defect of TLR4 led to suppressed enterocytes apoptosis both in vitro and in vivo; the expression of caspase3, caspase8, Bip, and Bax was decreased; and caspase9 and Bcl-2 were increased. NEC severity was attenuated in TLR4-deficient mice compared with wild-type counterparts, and enterocytes apoptosis was correlated with NEC severity. RIP and cytokine level of tumor necrosis factor-a and interleukin-2 were also decreased. Conclusions: TLR4-induced inflammation and apoptosis play a critical role in the pathogenesis of NEC. TLR4 inhibition, combined with extrinsic (caspase8) and/or endoplasmic reticulum stress (Bip) apoptosis signaling blockade could serve as a potential effective treating strategy for NEC.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy