SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Huang Xiaoran) "

Sökning: WFRF:(Huang Xiaoran)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wang, Mojin, et al. (författare)
  • A-Kinase Anchoring Proteins 10 Expression in Relation to 2073A/G Polymorphism and Tumor Progression in Patients with Colorectal Cancer
  • 2013
  • Ingår i: Pathology and Oncology Research. - : Springer Verlag (Germany). - 1219-4956 .- 1532-2807. ; 19:3, s. 521-527
  • Tidskriftsartikel (refereegranskat)abstract
    • The cAMP/PKA signalling events regulated by A-kinase anchoring proteins 10 (AKAP10) is involved in tumorigenesis. Previous study showed that AKAP10 polymorphism (2073 A/G, I646V) was associated with colorectal cancer risk. However, there was no literature reporting the role of AKAP10 in the pathogenesis of colorectal cancer. The aim of the study was to investigate the clinicopathologic significance of A-kinase anchoring proteins 10 (AKAP 10) expression and the relationship with its polymorphism in colorectal cancer. The expression of AKAP10 was determined by immunohistochemical staining (IHC) and western blot assay on colorectal cancer (n = 176), adenoma (n = 87) and distant normal mucosa (n  = 72). 176 patients with colorectal cancer were genotyped for AKAP10 2073A/G polymorphism by TaqMan RT-PCR. We found that the positive expression rate of AKAP10 in colorectal cancer (59 %) was significantly higher than those in adenoma (39 %) and distant normal mucosa (42 %) (P = 0.004). There was no significant difference between adenoma and distant normal mucosa (P = 0.741). Positive AKAP10 staining was correlated with deeper tumor invasion (P < 0.001), lymph nodes metastasis (P = 0.022), advanced tumor stage (P < 0.001) and poorly differentiated degree (P  = 0.003). Compared with AA genotype (52 %), positive expression of AKAP10 was significantly increased in colorectal cancer patients with the variant (AG+GG) genotypes (68 %, P = 0.033). It was concluded that AKAP10 may play an important role in the development and progression of colorectal cancer.
  •  
2.
  • Xu, Xiaoran, et al. (författare)
  • Applications of Boron Cluster Supramolecular Frameworks as Metal-Free Chemodynamic Therapy Agents for Melanoma
  • 2023
  • Ingår i: Small. - : WILEY-V C H VERLAG GMBH. - 1613-6810 .- 1613-6829.
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemodynamic therapy (CDT) is a highly targeted approach to treat cancer since it converts hydrogen peroxide into harmful hydroxyl radicals (OH & BULL;) through Fenton or Fenton-like reactions. However, the systemic toxicity of metal-based CDT agents has limited their clinical applications. Herein, a metal-free CDT agent: 2,4,6-tri(4-pyridyl)-1,3,5-triazine (TPT)/ [closo-B12H12]2-(TPT@ B12H12) is reported. Compared to the traditional metal-based CDT agents, TPT@B12H12 is free of metal avoiding cumulative toxicity during long-term therapy. Density functional theory (DFT) calculation revealed that TPT@B12H12 decreased the activation barrier more than 3.5 times being a more effective catalyst than the Fe2+ ion (the Fenton reaction), which decreases the barrier about twice. Mechanismly, the theory calculation indicated that both [B12H12]-& BULL; and [TPT-H]2+ have the capacity to decompose hydrogen into 1O2, OH & BULL;, and O2-& BULL;. With electron paramagnetic resonance and fluorescent probes, it is confirmed that TPT@B12H12 increases the levels of 1O2, OH & BULL;, and O2-& BULL;. More importantly, TPT@B12H12 effectively suppress the melanoma growth both in vitro and in vivo through 1O2, OH & BULL;, and O2-& BULL; generation. This study specifically highlights the great clinical translational potential of TPT@B12H12 as a CDT reagent. 2,4,6-Tri(4-pyridyl)-1,3,5-triazine (TPT)/ [closo-B12H12]2-(TPT@B12H12), a metal-free chemodynamic therapy (CDT) agent, decreases the activation barrier more than 3.5 times being a more effective catalyst than the Fe2+ ion (the Fenton reaction), which decreases the barrier about twice. More importantly, TPT@B12H12 effectively suppress the melanoma growth both in vitro and in vivo through 1O2, OH & BULL;, and O2-& BULL; generation. image
  •  
3.
  • Xu, Xiaoran, et al. (författare)
  • Applications of Boron Cluster Supramolecular Frameworks as Metal-Free Chemodynamic Therapy Agents for Melanoma
  • 2024
  • Ingår i: Small. - : John Wiley & Sons. - 1613-6810 .- 1613-6829. ; 20:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemodynamic therapy (CDT) is a highly targeted approach to treat cancer since it converts hydrogen peroxide into harmful hydroxyl radicals (OH & BULL;) through Fenton or Fenton-like reactions. However, the systemic toxicity of metal-based CDT agents has limited their clinical applications. Herein, a metal-free CDT agent: 2,4,6-tri(4-pyridyl)-1,3,5-triazine (TPT)/ [closo-B12H12]2-(TPT@ B12H12) is reported. Compared to the traditional metal-based CDT agents, TPT@B12H12 is free of metal avoiding cumulative toxicity during long-term therapy. Density functional theory (DFT) calculation revealed that TPT@B12H12 decreased the activation barrier more than 3.5 times being a more effective catalyst than the Fe2+ ion (the Fenton reaction), which decreases the barrier about twice. Mechanismly, the theory calculation indicated that both [B12H12]-& BULL; and [TPT-H]2+ have the capacity to decompose hydrogen into 1O2, OH & BULL;, and O2-& BULL;. With electron paramagnetic resonance and fluorescent probes, it is confirmed that TPT@B12H12 increases the levels of 1O2, OH & BULL;, and O2-& BULL;. More importantly, TPT@B12H12 effectively suppress the melanoma growth both in vitro and in vivo through 1O2, OH & BULL;, and O2-& BULL; generation. This study specifically highlights the great clinical translational potential of TPT@B12H12 as a CDT reagent. 2,4,6-Tri(4-pyridyl)-1,3,5-triazine (TPT)/ [closo-B12H12]2-(TPT@B12H12), a metal-free chemodynamic therapy (CDT) agent, decreases the activation barrier more than 3.5 times being a more effective catalyst than the Fe2+ ion (the Fenton reaction), which decreases the barrier about twice. More importantly, TPT@B12H12 effectively suppress the melanoma growth both in vitro and in vivo through 1O2, OH & BULL;, and O2-& BULL; generation. image
  •  
4.
  • Xu, Xiaoran, et al. (författare)
  • Synthesis of iron-boride/carbon-nitride composites and their applications in chemodynamic therapy
  • 2024
  • Ingår i: Journal of Colloid and Interface Science. - : Elsevier. - 0021-9797 .- 1095-7103. ; 658, s. 276-285
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemodynamic therapy (CDT) is an emerging treatment strategy that inhibits tumor growth by catalyzing the generation of reactive oxygen species (ROS), such as hydroxyl radicals (center dot OH), using specific nanomaterials. Herein, we have developed a new class of iron-based nanomaterials, i.e., iron-based borides (FeB), using the superchaotropic effect of a boron cluster (closo-[B12H1212-) and organic ligands, followed by high-temperature calcination. Experimental data and theoretical calculations revealed that FeB nanoparticles exhibit a Fentonlike effect, efficiently decomposing hydrogen peroxide into center dot OH and thus increasing the concentration of ROS. FeB nanomaterials demonstrate excellent catalytic performance, efficiently generate ROS, and exert significant antitumor effects in cell experiments and animal models. Therefore, FeB nanomaterials have
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy