SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Huebert J.) "

Sökning: WFRF:(Huebert J.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Wood, R., et al. (författare)
  • The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) : goals, platforms, and field operations
  • 2011
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 11:2, s. 627-654
  • Tidskriftsartikel (refereegranskat)abstract
    • The VAMOS(1) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) was an international field program designed to make observations of poorly understood but critical components of the coupled climate system of the southeast Pacific. This region is characterized by strong coastal upwelling, the coolest SSTs in the tropical belt, and is home to the largest subtropical stratocumulus deck on Earth. The field intensive phase of VOCALS-REx took place during October and November 2008 and constitutes a critical part of a broader CLIVAR program (VOCALS) designed to develop and promote scientific activities leading to improved understanding, model simulations, and predictions of the southeastern Pacific (SEP) coupled ocean-atmosphere-land system, on diurnal to interannual timescales. The other major components of VOCALS are a modeling program with a model hierarchy ranging from the local to global scales, and a suite of extended observations from regular research cruises, instrumented moorings, and satellites. The two central themes of VOCALS-REx focus upon (a) links between aerosols, clouds and precipitation and their impacts on marine stratocumulus radiative properties, and (b) physical and chemical couplings between the upper ocean and the lower atmosphere, including the role that mesoscale ocean eddies play. A set of hypotheses designed to be tested with the combined field, monitoring and modeling work in VOCALS is presented here. A further goal of VOCALS-REx is to provide datasets for the evaluation and improvement of large-scale numerical models. VOCALS-REx involved five research aircraft, two ships and two surface sites in northern Chile. We describe the instrument pay-loads and key mission strategies for these platforms and give a summary of the missions conducted.
  •  
3.
  • Blomquist, B. W., et al. (författare)
  • Wind Speed and Sea State Dependencies of Air-Sea Gas Transfer : Results From the High Wind Speed Gas Exchange Study (HiWinGS)
  • 2017
  • Ingår i: Journal of Geophysical Research - Oceans. - 2169-9275 .- 2169-9291. ; 122:10, s. 8034-8062
  • Tidskriftsartikel (refereegranskat)abstract
    • A variety of physical mechanisms are jointly responsible for facilitating air-sea gas transfer through turbulent processes at the atmosphere-ocean interface. The nature and relative importance of these mechanisms evolves with increasing wind speed. Theoretical and modeling approaches are advancing, but the limited quantity of observational data at high wind speeds hinders the assessment of these efforts. The HiWinGS project successfully measured gas transfer coefficients (k(660)) with coincident wave statistics under conditions with hourly mean wind speeds up to 24 m s(-1) and significant wave heights to 8 m. Measurements of k(660) for carbon dioxide (CO2) and dimethylsulfide (DMS) show an increasing trend with respect to 10 m neutral wind speed (U-10N), following a power law relationship of the form: k660CO2 approximate to U10N1.68 and k660dms approximate to U10N1.33. Among seven high wind speed events, CO2 transfer responded to the intensity of wave breaking, which depended on both wind speed and sea state in a complex manner, with k660CO2 increasing as the wind sea approaches full development. A similar response is not observed for DMS. These results confirm the importance of breaking waves and bubble injection mechanisms in facilitating CO2 transfer. A modified version of the Coupled Ocean-Atmosphere Response Experiment Gas transfer algorithm (COAREG ver. 3.5), incorporating a sea state-dependent calculation of bubble-mediated transfer, successfully reproduces the mean trend in observed k(660) with wind speed for both gases. Significant suppression of gas transfer by large waves was not observed during HiWinGS, in contrast to results from two prior field programs.
  •  
4.
  •  
5.
  • Cherevatova, M., et al. (författare)
  • Magnetotelluric array data analysis from north-west Fennoscandia
  • 2015
  • Ingår i: Tectonophysics. - : Elsevier BV. - 0040-1951 .- 1879-3266. ; 653, s. 1-19
  • Tidskriftsartikel (refereegranskat)abstract
    • New magnetotelluric (MT) data in north-west Fennoscandia were acquired within the framework of the project "Magnetotellurics in the Scandes" (MaSca). The project focuses on the investigation of the crustal and upper mantle lithospheric structure in the transition zone from stable Precambrian cratonic interior to passive continental margin beneath the Caledonian orogen and the Scandinavian Mountains in western Fennoscandia. An array of 59 synchronous long period and 220 broad-band MT sites was occupied in the summers of 2011 to 2013. We estimated MT transfer functions in the period range from 0.003 to 10(5) s. The Q-function multi-site multi-frequency analysis and the phase tensor were used to estimate strike and dimensionality of MT data. Dimensionality and strike analyses indicate generally 2-D behaviour of the data with 3-D effects at some sites and period bands. In this paper we present 2-D inversion of the data, 3-D inversion models are shown in the parallel paper. We choose to invert the determinant of the impedance tensor to mitigate 3-D effects in the data on our 2-D models. Seven crustal-scale and four lithospheric-scale 2-D models are presented. The resistive regions are images of the Archaean and Proterozoic basement in the east and thin Caledonian nappes in the west. The middle and lower crust of the Svecofennian province is conductive. The southern end of the Kittila Greenstone Belt is seen in the models as a strong upper to middle crustal conductor. In the Caledonides, the highly conductive alum shales are observed along the Caledonian Thrust Front. The thickest lithosphere is in the Palaeoproterozioc Svecofennian Domain, not in the Archaean. The thickness of the lithosphere is around 200 km in the north and 300 km in the south-west.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy