SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Huehn J.) "

Sökning: WFRF:(Huehn J.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cossarizza, A., et al. (författare)
  • Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition)
  • 2019
  • Ingår i: European Journal of Immunology. - : Wiley. - 0014-2980 .- 1521-4141. ; 49:10, s. 1457-1973
  • Tidskriftsartikel (refereegranskat)abstract
    • These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion.
  •  
2.
  • Fergusson, J. R., et al. (författare)
  • CD161(int)CD8+T cells : a novel population of highly functional, memory CD8+T cells enriched within the gut
  • 2016
  • Ingår i: Mucosal Immunology. - : Elsevier BV. - 1933-0219 .- 1935-3456. ; 9:2, s. 401-413
  • Tidskriftsartikel (refereegranskat)abstract
    • The C-type lectin-like receptor CD161 is expressed by lymphocytes found in human gut and liver, as well as blood, especially natural killer (NK) cells, T helper 17 (Th17) cells, and a population of unconventional Tcells known as mucosalassociated invariant T (MAIT) cells. The association of high CD161 expression with innate T-cell populations including MAITcells is established. Here we show that CD161 is also expressed, at intermediate levels, on a prominent subset of polyclonal CD8+ T cells, including antiviral populations that display a memory phenotype. These memory CD161(int)CD8+ Tcells are enriched within the colon and express both CD103 and CD69, markers associated with tissue residence. Furthermore, this population was characterized by enhanced polyfunctionality, increased levels of cytotoxic mediators, and high expression of the transcription factors T-bet and eomesodermin (EOMES). Such populations were induced by novel vaccine strategies based on adenoviral vectors, currently in trial against hepatitis C virus. Thus, intermediate CD161 expression marks potent polyclonal, polyfunctional tissue-homing CD8+ T-cell populations in humans. As induction of such responses represents a major aim of T-cell prophylactic and therapeutic vaccines in viral disease and cancer, analysis of these populations could be of value in the future.
  •  
3.
  • Grønlund, H., et al. (författare)
  • Microarray-based genotyping of Salmonella : Inter-laboratory evaluation of reproducibility and standardization potential
  • 2011
  • Ingår i: International Journal of Food Microbiology. - : Elsevier BV. - 0168-1605 .- 1879-3460. ; 145:SUPPL. 1, s. S79-S85
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacterial food-borne infections in humans caused by Salmonella spp. are considered a crucial food safety issue. Therefore, it is important for the risk assessments of Salmonella to consider the genomic variation among different isolates in order to control pathogen-induced infections. Microarray technology is a promising diagnostic tool that provides genomic information on many genes simultaneously. However, standardization of DNA microarray analysis is needed before it can be used as a routine method for characterizing Salmonella isolates across borders and laboratories. A comparative study was designed in which the agreement of data from a DNA microarray assay used for typing Salmonella spp. between two different labs was assessed. The study was expected to reveal the possibility of obtaining the same results in different labs using different equipment in order to evaluate the reproducibility of the microarray technique as a first step towards standardization. The low-density array contains 281 57-60-mer oligonucleotide probes for detecting a wide range of specific genomic marker genes associated with antibiotic resistance, cell envelope structures, mobile genetic elements and pathogenicity. Several critical methodology parameters that differed between the two labs were identified. These related to printing facilities, choice of hybridization buffer, wash buffers used following the hybridization and choice of procedure for purifying genomic DNA. Critical parameters were randomized in a four-factorial experiment and statistical measures of inter-lab consistency and agreement were performed based on the kappa coefficient. A high level of agreement (kappa = 0.7-1.0) in microarray results was obtained even when employing different printing and hybridization facilities, different procedures for purifying genomic DNA and different wash buffers. However, less agreement (Kappa = 0.2-0.6) between microarray results were observed when using different hybridization buffers, indicating this parameter as being highly critical when transferring a standard microarray assay between laboratories. In conclusion, this study indicates that DNA microarray assays can be reproduced in at least two different facilities, which is a pre-requisite for the development of standard guidelines. © 2010 Elsevier B.V.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy