SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hughes Arwel V.) "

Sökning: WFRF:(Hughes Arwel V.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hemming, Joanna M., et al. (författare)
  • Environmental Pollutant Ozone Causes Damage to Lung Surfactant Protein B (SP-B)
  • 2015
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 54:33, s. 5185-5197
  • Tidskriftsartikel (refereegranskat)abstract
    • Lung surfactant protein B (SP-B) is an essential protein found in the surfactant fluid at the air water interface of the lung. Exposure to the air pollutant ozone could potentially damage SP-B and lead to respiratory distress. We have studied two peptides, one consisting of the N-terminus of SP-B [SP-B(1-25)] and the other a construct of the N- and C-termini of SP-B [SP-B-(1-25,B-63-78)], called SMB. Exposure to dilute levels of ozone (similar to 2 ppm) of monolayers of each peptide at the air water interface leads to a rapid reaction, which is evident from an increase in the surface tension. Fluorescence experiments revealed that this increase in surface tension is accompanied by a loss of fluorescence from the tryptophan residue at the interface. Neutron and X-ray reflectivity experiments show that, in contrast to suggestions in the literature, the peptides are not solubilized upon oxidation but rather remain at the interface with little change in their hydration. Analysis of the product material reveals that no cleavage of the peptides occurs, but a more hydrophobic product is slowly formed together with an increased level of oligomerization. We attributed this to partial unfolding of the peptides. Experiments conducted in the presence of phospholipids reveal that the presence of the lipids does not prevent oxidation of the peptides. Our results strongly suggest that exposure to low levels of ozone gas will damage SP-B, leading to a change in its structure. The implication is that the oxidized protein will be impaired in its ability to interact at the air water interface with negatively charged phosphoglycerol lipids, thus compromising what is thought to be its main biological function.
  •  
2.
  • Thompson, Katherine C., et al. (författare)
  • Degradation and Rearrangement of a Lung Surfactant Lipid at the Air-Water Interface during Exposure to the Pollutant Gas Ozone
  • 2013
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 29:14, s. 4594-4602
  • Tidskriftsartikel (refereegranskat)abstract
    • The presence of unsaturated lipids in lung surfactant is important for proper respiratory function. In this work, we have used neutron reflection and surface pressure measurements to study the reaction of the ubiquitous pollutant gas-phase ozone, 03, with pure and mixed phospholipid monolayers at the air-water interface. The results reveal that the reaction of the unsaturated lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC, with ozone leads to the rapid loss of the terminal C9 portion of the oleoyl strand of POPC from the air-water interface. The loss of the C9 portion from the interface is accompanied by an increase in the surface pressure (decrease in surface tension) of the film at the air-water interface. The results suggest that the portion of the oxidized oleoyl strand that is still attached to the lipid headgroup rapidly reverses its orientation and penetrates the air-water interface alongside the original headgroup, thus increasing the surface pressure. The reaction of POPC with ozone also leads to a loss of material from the palmitoyl strand, but the loss of palmitoyl material occurs after the loss of the terminal C9 portion from the oleoyl strand of the molecule, suggesting that the palmitoyl material is lost in a secondary reaction step. Further experiments studying the reaction of mixed monolayers composed of unsaturated lipid POPC and saturated lipid dipalmitoyl-sn-glycero-3-phosphocholine, DPPC, revealed that no loss of DPPC from the air-water interface occurs, eliminating the possibility that a reactive species such as an OH radical is formed and is able to attack nearby lipid chains. The reaction of ozone with the mixed films does cause a significant change in the surface pressure of the air-water interface. Thus, the reaction of unsaturated lipids in lung surfactant changes and impairs the physical properties of the film at the air-water interface.
  •  
3.
  • Thompson, Katherine C., et al. (författare)
  • Reaction of a Phospholipid Monolayer with Gas-Phase Ozone at the Air-Water Interface : Measurement of Surface Excess and Surface Pressure in Real Time
  • 2010
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 26:22, s. 17295-17303
  • Tidskriftsartikel (refereegranskat)abstract
    • The reaction between gas-phase ozone and monolayers of the unsaturated lipid 1-palmitoy1-2-oleoyl-sn-glycero-3-phosphocholine, POPC, on aqueous solutions has been studied in real time using neutron reflection and surface pressure measurements. The reaction between ozone and lung surfactant, which contains POPC, leads to decreased pulmonary function, but little is known shout the changes that occur to the interfacial material as a result of oxidation. The results reveal that the initial reaction of ozone with POPC leads to a rapid increase in surface pressure followed by a slow decrease to very low values. The neutron reflection measurements, performed on an isotopologue of POPC with a selectively deuterated palmitoyl strand, reveal that the reaction leads to loss of this strand from the air-water interface. suggesting either solubilization of the product lipid or degradation of the palmitoyl strand by a reactive species. Reactions of H-1-POPC on D2O reveal that the headgroup region of the lipids in aqueous solution is not dramatically perturbed by the reaction of POPC monolayers with ozone supporting degradation of the palmitoyl strand rather than solubilization. The results are consistent with the reaction of ozone with the oleoyl strand of POPC at the air water interface leading to the formation of OH radicals. the highly reactive OH radicals produced can then go on to react with the saturated palmitoyl strands leading to the formation or oxidized lipids with shorter alkyl tails.
  •  
4.
  • Hellsing, Maja, et al. (författare)
  • Adsorption of Aerosol-OT to Sapphire : Lamellar Structures Studied with Neutrons
  • 2011
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 27:8, s. 4669-4678
  • Tidskriftsartikel (refereegranskat)abstract
    • The adsorption of sodium bis 2-ethylhexyl sulfosuccinate, NaAOT, to a sapphire surface from aqueous solution has been studied by neutron reflection at concentrations above the critical micelle concentration (cmc). Complementary measurements of the bulk structure were made with small-angle neutron scattering and grazing incidence small-angle neutron scattering. At a concentration of about 1% wt (10 X cmc), lamellar phase NaAOT was observed both at the surface and in the bulk. The structure seen at the interface for a solution of 2% wt NaAOT is a 35 +/- 2 angstrom thick bilayer adsorbed to the sapphire surface at maximum packing density, followed by an aligned stack of fluctuating bilayers of thickness 51 +/- 2 angstrom and with an area per molecule of 40 +/- 2 angstrom(2). Each bilayer is separated by a water: at 25 degrees C, this layer is 148 +/- 2 angstrom. A simple model for the reflectivity from fluctuating layers is presented, and for 2.0% wt NaAOT the fluctuations were found to have an amplitude of 25 +/- 5 angstrom. The temperature sensitivity of the structure at the surface was investigated in the range 15-30 degrees C. The effect of temperature was pronounced, with the solvent layer becoming thinner and the volume occupied by the NaAOT molecules in a bilayer increasing with temperature. The amplitude of the fluctuations, however, is approximately temperature independent in this range. The adsorption of NaAOT at the sapphire surface resembles that previously found at hydrophilic and hydrophobic silica surfaces. The coexisting bulk lamellar phase has a spacing of layers similar to that observed at the surface. These observations are an indication that the major driving force for adsorption is self-assembly, independent of the chemical nature of the interface.
  •  
5.
  • Hellsing, Maja S., et al. (författare)
  • Crystalline order of polymer nanoparticles over large areas at solid/liquid interfaces
  • 2012
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 100:22, s. 221601-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the formation of large two-dimensional domains (about 20 cm2) of oriented and ordered structures of polystyrene particles dispersed in water at a solid/liquid interface.  Gentle flow of the dispersed sample into the holder at a shear strain rate of about 0.1 s−1 caused particles at the air/latex meniscus to self-assemble in a regular structure on both solid silica or alumina surfaces.  Scattering experiments show that the particle separation at the surface was the same as in the bulk and determined by repulsion arising from the charges on the particles.  Close-packed planes formed parallel to the interface.
  •  
6.
  • Hellsing, Maja S., et al. (författare)
  • Effect of Concentration and Addition of Ions on the Adsorption of Aerosol-OT to Sapphire
  • 2010
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 26:18, s. 14567-14573
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerosol-OT (sodium bis 2-ethylhexyl sulfosuccinate or NaAOT) adsorbs to hydrophilic sapphire solid surfaces The structure of the formed bilayer has been determined over the concentration range 0 2-7 4mM NaAOT It was found that the hydrocarbon tails pack at maximum packing limit at very low concentrations, and that the thickness of the bilayer was concentration-independent The adsorption was found to increase with concentration, with the surfactant molecules packing closer laterally The area per molecule was found to change from 138 +/- 25 to 51 +/- 4 angstrom(2) over the concentration range studied, with the thickness of the layer being constant at 33 2 A Addition of small amounts of salt was found to increase the surface excess, with the bilayer being thinner with a slightly larger area per molecule Addition of different salts of the same valency was found to have a very similiar effect, as had the addition of NaOH and HCl Hence, the effects of adding acid or base should be considered an effect of ionic strength rather than an effect of pH Adsorption of NaAOT to the sapphire surface that carries an opposite charge to the anionic surfactant is similar in many respects to the adsorption reported previously for hydrophilic and hydrophobic silica surfaces This suggests that the adsorption of NaAOT to a sui face is driven primarily by NaAOT self-assembly rather than effects of electrostatic at to the interface
  •  
7.
  • Hellsing, Maja S., et al. (författare)
  • Sorption of perfluoroalkyl substances to two types of minerals
  • 2016
  • Ingår i: Chemosphere. - : Elsevier BV. - 0045-6535 .- 1879-1298. ; 159, s. 385-391
  • Tidskriftsartikel (refereegranskat)abstract
    • The sorption of perfluoroalkyl substances (PFASs) was investigated for two model soil mineral surfaces, alumina (Al2O3) and silica (SiO2), on molecular level using neutron scattering. The PFASs were selected (i.e. perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorooctane sulfonic acid (PFOS)) to examine the role of hydrophobic chain length and hydrophilic functional group on their sorption behaviour. All four PFASs were found to sorb to alumina surface (positively charged) forming a hydrated layer consisting of 50% PFASs. The PFAS solubility limit, which decrease with chain length, was found to strongly influence the sorption behaviour. The sorbed PFAS layer could easily be removed by gentle rinsing with water, indicating release upon rainfall in the environment. No sorption was observed for PFOA and PFOS at silica surface (negatively charged), showing electrostatic interaction being the driving force in the sorption process.
  •  
8.
  • Jones, Stephanie H., et al. (författare)
  • Aqueous Radical Initiated Oxidation of an Organic Monolayer at the Air-Water Interface as a Proxy for Thin Films on Atmospheric Aerosol Studied with Neutron Reflectometry
  • 2023
  • Ingår i: Journal of Physical Chemistry A. - : American Chemical Society (ACS). - 1089-5639 .- 1520-5215. ; 127:42, s. 8922-8934
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutron reflectometry has been used to study the radical initiated oxidation of a monolayer of the lipid 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) at the air–solution interface by aqueous-phase hydroxyl, sulfate, and nitrate radicals. The oxidation of organic films at the surface of atmospheric aqueous aerosols can influence the optical properties of the aerosol and consequently can impact Earth’s radiative balance and contribute to modern climate change. The amount of material at the air–solution interface was found to decrease on exposure to aqueous-phase radicals which was consistent with a multistep degradation mechanism, i.e., the products of reaction of the DSPC film with aqueous radicals were also surface active. The multistep degradation mechanism suggests that lipid molecules in the thin film degrade to form progressively shorter chain surface active products and several reactive steps are required to remove the film from the air–solution interface. Bimolecular rate constants for oxidation via the aqueous phase OH radical cluster around 1010 dm3 mol–1 s–1. Calculations to determine the film lifetime indicate that it will take ∼4–5 days for the film to degrade to 50% of its initial amount in the atmosphere, and therefore attack by aqueous radicals on organic films could be atmospherically important relative to typical atmospheric aerosol lifetimes.
  •  
9.
  • King, Martin D., et al. (författare)
  • Oxidation of oleic acid at the air-water interface and its potential effects on cloud critical supersaturations
  • 2009
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 11:35, s. 7699-7707
  • Tidskriftsartikel (refereegranskat)abstract
    • The oxidation of organic films on cloud condensation nuclei has the potential to affect climate and precipitation events. In this work we present a study of the oxidation of a monolayer of deuterated oleic acid (cis-9-octadecenoic acid) at the air-water interface by ozone to determine if oxidation removes the organic film or replaces it with a product film. A range of different aqueous sub-phases were studied. The surface excess of deuterated material was followed by neutron reflection whilst the surface pressure was followed using a Wilhelmy plate. The neutron reflection data reveal that approximately half the organic material remains at the air-water interface following the oxidation of oleic acid by ozone, thus cleavage of the double bond by ozone creates one surface active species and one species that partitions to the bulk (or gas) phase. The most probable products, produced with a yield of similar to(87 +/- 14)%, are nonanoic acid, which remains at the interface, and azelaic acid (nonanedioic acid), which dissolves into the bulk solution. We also report a surface bimolecular rate constant for the reaction between ozone and oleic acid of (7.3 +/- 0.9) x 10(-11) cm(2) molecule s(-1). The rate constant and product yield are not affected by the solution sub-phase. An uptake coefficient of ozone on the oleic acid monolayer of similar to 4 x 10(-6) is estimated from our results. A simple Kohler analysis demonstrates that the oxidation of oleic acid by ozone on an atmospheric aerosol will lower the critical supersaturation needed for cloud droplet formation. We calculate an atmospheric chemical lifetime of oleic acid of 1.3 hours, significantly longer than laboratory studies on pure oleic acid particles suggest, but more consistent with field studies reporting oleic acid present in aged atmospheric aerosol.
  •  
10.
  • King, Martin D., et al. (författare)
  • The reaction of oleic acid monolayers with gas-phase ozone at the air water interface : the effect of sub-phase viscosity, and inert secondary components
  • 2020
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : ROYAL SOC CHEMISTRY. - 1463-9076 .- 1463-9084. ; 22:48, s. 28032-28044
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic films that form on atmospheric particulate matter change the optical and cloud condensation nucleation properties of the particulate matter and consequently have implications for modern climate and climate models. The organic films are subject to attack from gas-phase oxidants present in ambient air. Here we revisit in greater detail the oxidation of a monolayer of oleic acid by gas-phase ozone at the air-water interface as this provides a model system for the oxidation reactions that occur at the air-water interface of aqueous atmospheric aerosol. Experiments were performed on monolayers of oleic acid at the air-liquid interface at atmospherically relevant ozone concentrations to investigate if the viscosity of the sub-phase influences the rate of the reaction and to determine the effect of the presence of a second component within the monolayer, stearic acid, which is generally considered to be non-reactive towards ozone, on the reaction kinetics as determined by neutron reflectometry measurements. Atmospheric aerosol can be extremely viscous. The kinetics of the reaction were found to be independent of the viscosity of the sub-phase below the monolayer over a range of moderate viscosities, eta/eta water = 1.0-7.2, demonstrating no involvement of aqueous sub-phase oxidants in the rate determining step. The kinetics of oxidation of monolayers of pure oleic acid were found to depend on the surface coverage with different behaviour observed above and below a surface coverage of oleic acid of similar to 1 x 10(18) molecule m(-2). Atmospheric aerosol are typically complex mixtures, and the presence of an additional compound in the monolayer that is inert to direct ozone oxidation, stearic acid, did not significantly change the reaction kinetics. It is demonstrated that oleic acid monolayers at the air-water interface do not leave any detectable material at the air-water interface, contradicting the previous work published in this journal which the authors now believe to be erroneous. The combined results presented here indicate that the kinetics, and thus the atmospheric chemical lifetime for unsaturated surface active materials at the air-water interface to loss by reaction with gas-phase ozone, can be considered to be independent of other materials present at either the air-water interface or in the aqueous sub-phase.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy