SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Huitema Alwin D. R.) "

Sökning: WFRF:(Huitema Alwin D. R.)

  • Resultat 1-10 av 50
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chu, Wan-Yu, et al. (författare)
  • Pharmacokinetic/Pharmacodynamic Modelling of Allopurinol, its Active Metabolite Oxypurinol, and Biomarkers Hypoxanthine, Xanthine and Uric Acid in Hypoxic-Ischemic Encephalopathy Neonates
  • 2022
  • Ingår i: Clinical Pharmacokinetics. - : Springer Nature. - 0312-5963 .- 1179-1926. ; 61:2, s. 321-333
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Allopurinol, an xanthine oxidase (XO) inhibitor, is a promising intervention that may provide neuroprotection for neonates with hypoxic-ischemic encephalopathy (HIE). Currently, a double-blind, placebo-controlled study (ALBINO, NCT03162653) is investigating the neuroprotective effect of allopurinol in HIE neonates.OBJECTIVE: The aim of the current study was to establish the pharmacokinetics (PK) of allopurinol and oxypurinol, and the pharmacodynamics (PD) of both compounds on hypoxanthine, xanthine, and uric acid in HIE neonates. The dosage used and the effect of allopurinol in this population, either or not undergoing therapeutic hypothermia (TH), were evaluated.METHODS: Forty-six neonates from the ALBINO study and two historical clinical studies were included. All doses were administered on the first day of life. In the ALBINO study (n = 20), neonates received a first dose of allopurinol 20 mg/kg, and, in the case of TH (n = 13), a second dose of allopurinol 10 mg/kg. In the historical cohorts (n = 26), neonates (all without TH) received two doses of allopurinol 20 mg/kg in total. Allopurinol and oxypurinol population PK, and their effects on inhibiting conversions of hypoxanthine and xanthine to uric acid, were assessed using nonlinear mixed-effects modelling.RESULTS: Allopurinol and oxypurinol PK were described by two sequential one-compartment models with an autoinhibition effect on allopurinol metabolism by oxypurinol. For allopurinol, clearance (CL) was 0.83 L/h (95% confidence interval [CI] 0.62-1.09) and volume of distribution (Vd) was 2.43 L (95% CI 2.25-2.63). For metabolite oxypurinol, CL and Vd relative to a formation fraction (fm) were 0.26 L/h (95% CI 0.23-0.3) and 11 L (95% CI 9.9-12.2), respectively. No difference in allopurinol and oxypurinol CL was found between TH and non-TH patients. The effect of allopurinol and oxypurinol on XO inhibition was described by a turnover model of hypoxanthine with sequential metabolites xanthine and uric acid. The combined allopurinol and oxypurinol concentration at the half-maximal XO inhibition was 0.36 mg/L (95% CI 0.31-0.42).CONCLUSION: The PK and PD of allopurinol, oxypurinol, hypoxanthine, xanthine, and uric acid in neonates with HIE were described. The dosing regimen applied in the ALBINO trial leads to the targeted XO inhibition in neonates treated with or without TH.
  •  
2.
  • Keizer, Ron J., et al. (författare)
  • A model of hypertension and proteinuria in cancer patients treated with the anti-angiogenic drug E7080
  • 2010
  • Ingår i: Journal of Pharmacokinetics and Pharmacodynamics. - : Springer Science and Business Media LLC. - 1567-567X .- 1573-8744. ; 37:4, s. 347-363
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypertension and proteinuria are commonly observed side-effects for anti-angiogenic drugs targeting the VEGF pathway. In most cases, hypertension can be controlled by prescription of anti-hypertensive (AH) therapy, while proteinuria often requires dose reductions or dose delays. We aimed to construct a pharmacokinetic-pharmacodynamic (PK-PD) model for hypertension and proteinuria following treatment with the experimental VEGF-inhibitor E7080, which would allow optimization of treatment, by assessing the influence of anti-hypertensive medication and dose reduction or dose delays in treating and avoiding toxicity. Data was collected from a phase I study of E7080 (n = 67), an inhibitor of multiple tyrosine kinases, among which VEGF. Blood pressure and urinalysis data were recorded weekly. Modeling was performed in NONMEM, and direct and indirect response PK-PD models were evaluated. A previously developed PK model was used. An indirect response PK-PD model described the increase in BP best, while the probability of developing proteinuria toxicity in response to exposure to E7080, was best described by a Markov transition model. This model may guide clinical interventions and provide treatment recommendations for E7080, and may serve as a template model for other drugs in this class.
  •  
3.
  • Schmidt, Keith T, et al. (författare)
  • Population pharmacokinetic analysis of nanoparticle-bound and free camptothecin after administration of NLG207 in adults with advanced solid tumors.
  • 2020
  • Ingår i: Cancer Chemotherapy and Pharmacology. - : Springer Science and Business Media LLC. - 0344-5704 .- 1432-0843. ; 86:4, s. 475-486
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: NLG207 (formerly CRLX101) is a nanoparticle-drug conjugate (NDC) of the potent topoisomerase I inhibitor, camptothecin (CPT). The present study sought to characterize the complex pharmacokinetics (PK) of NLG207 and better describe CPT release from nanoparticles using a population PK (popPK) model.METHODS: From 27 patients enrolled on two phase II clinical trials (NCT02769962 and NCT03531827), dense sampling was performed up to 48 h post-administration of NLG207 during cycle one and six of treatment; samples were also collected at ~ 360 h post-dose. Conjugated and free CPT concentrations were quantified from each sample, resulting in 477 observations to build a popPK model using non-linear mixed-effects modeling.RESULTS: The PK of NLG207 was characterized by combining two linear two-compartment models with first-order kinetics each to describe nanoparticle-bound (conjugated) and free CPT. Allometric scaling based on body weight provided the best body-size descriptor for all PK parameters. The typical volumes of distribution of the conjugated CPT central and free CPT central compartments were 3.16 L (BSV CV%; 18.1%) and 21.1 L (CV%; 79.8%), respectively. CPT release from the nanoparticle formulation was characterized via an initial rapid clearance of 5.71 L/h (CV%; 62.6%), which decreased via first-order decay (estimated half-life of 0.307 h) to the steady-state value of 0.0988 L/h (CV%; 33.5%) by ~ 4 h after end of infusion. Renal clearance of free CPT was 0.874 L/h (CV%; 42.2%).CONCLUSION: The popPK model confirmed nanoparticle behavior of conjugated CPT and mechanistically characterized CPT release from NLG207. The current analysis provides a strong foundation for future study as a potential predictive tool in ongoing NLG207 clinical trials.
  •  
4.
  • Verrest, Luka, et al. (författare)
  • Leishmania blood parasite dynamics during and after treatment of visceral leishmaniasis in Eastern Africa : A pharmacokinetic-pharmacodynamic model
  • 2024
  • Ingår i: PLoS Neglected Tropical Diseases. - : Public Library of Science (PLoS). - 1935-2727 .- 1935-2735. ; 18:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: With the current treatment options for visceral leishmaniasis (VL), recrudescence of the parasite is seen in a proportion of patients. Understanding parasite dynamics is crucial to improving treatment efficacy and predicting patient relapse in cases of VL. This study aimed to characterize the kinetics of circulating Leishmania parasites in the blood, during and after different antileishmanial therapies, and to find predictors for clinical relapse of disease.Methods: Data from three clinical trials, in which Eastern African VL patients received various antileishmanial regimens, were combined in this study. Leishmania kinetoplast DNA was quantified in whole blood with real-time quantitative PCR (qPCR) before, during, and up to six months after treatment. An integrated population pharmacokinetic-pharmacodynamic model was developed using non-linear mixed effects modelling.Results: Parasite proliferation was best described by an exponential growth model, with an in vivo parasite doubling time of 7.8 days (RSE 12%). Parasite killing by fexinidazole, liposomal amphotericin B, sodium stibogluconate, and miltefosine was best described by linear models directly relating drug concentrations to the parasite elimination rate. After treatment, parasite growth was assumed to be suppressed by the host immune system, described by an Emax model driven by the time after treatment. No predictors for the high variability in onset and magnitude of the immune response could be identified. Model-based individual predictions of blood parasite load on Day 28 and Day 56 after start of treatment were predictive for clinical relapse of disease.Conclusion: This semi-mechanistic pharmacokinetic-pharmacodynamic model adequately captured the blood parasite dynamics during and after treatment, and revealed that high blood parasite loads on Day 28 and Day 56 after start of treatment are an early indication for VL relapse, which could be a useful biomarker to assess treatment efficacy of a treatment regimen in a clinical trial setting.
  •  
5.
  • Boosman, René J, et al. (författare)
  • Toxicity of pemetrexed during renal impairment explained-Implications for safe treatment
  • 2021
  • Ingår i: International Journal of Cancer. - : John Wiley & Sons. - 0020-7136 .- 1097-0215. ; 149:8, s. 1576-1584
  • Tidskriftsartikel (refereegranskat)abstract
    • Pemetrexed is an important component of first line treatment in patients with non-squamous non-small cell lung cancer. However, a limitation is the contraindication in patients with renal impairment due to hematological toxicity. Currently, it is unknown how to safely dose pemetrexed in these patients. The aim of our study was to elucidate the relationship between pemetrexed exposure and toxicity to support the development of a safe dosing regimen in patients with renal impairment. A population pharmacokinetic/pharmacodynamic analysis was performed based on phase II study results in three patients with renal dysfunction, supplemented with data from 106 patients in early clinical studies. Findings were externally validated with data of different pemetrexed dosing regimens. Alternative dosing regimens were evaluated using the developed model. We found that pemetrexed toxicity was driven by the time above a toxicity threshold concentration. The threshold for vitamin-supplemented patients was 0.110 mg/mL (95% CI: 0.092-0.146 mg/mL). It was observed that in patients with renal impairment (estimated glomerular filtration rate [eGFR]: <45 mL/min) the approved dose of 500 mg/m2 would yield a high probability of severe neutropenia in the range of 51.0% to 92.6%. A pemetrexed dose of 20 mg for patients (eGFR: 20 mL/min) is shown to be neutropenic-equivalent to the approved dose in patients with adequate renal function (eGFR: 90 mL/min), but would result in an approximately 13-fold lower area under the concentration-time curve. The pemetrexed exposure-toxicity relationship is explained by a toxicity threshold and substantially different from previously thought. Without prophylaxis for toxicity, it is unlikely that a therapeutic dose can be safely administered to patients with renal impairment.
  •  
6.
  • Chu, Wan-Yu, et al. (författare)
  • Semi-mechanistic Modeling of Hypoxanthine, Xanthine, and Uric Acid Metabolism in Asphyxiated Neonates
  • 2022
  • Ingår i: Clinical Pharmacokinetics. - : Springer Nature. - 0312-5963 .- 1179-1926.
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and objective: Previously, we developed a pharmacokinetic-pharmacodynamic model of allopurinol, oxypurinol, and biomarkers, hypoxanthine, xanthine, and uric acid, in neonates with hypoxic-ischemic encephalopathy, in which high initial biomarker levels were observed suggesting an impact of hypoxia. However, the full pharmacodynamics could not be elucidated in our previous study. The current study included additional data from the ALBINO study (NCT03162653) placebo group, aiming to characterize the dynamics of hypoxanthine, xanthine, and uric acid in neonates with hypoxic-ischemic encephalopathy.Methods: Neonates from the ALBINO study who received allopurinol or placebo mannitol were included. An extended population pharmacokinetic-pharmacodynamic model was developed based on the mechanism of purine metabolism, where synthesis, salvage, and degradation via xanthine oxidoreductase pathways were described. The initial level of the biomarkers was a combination of endogenous turnover and high disease-related amounts. Model development was accomplished by nonlinear mixed-effects modeling (NONMEM®, version 7.5).Results: In total, 20 neonates treated with allopurinol and 17 neonates treated with mannitol were included in this analysis. Endogenous synthesis of the biomarkers reduced with 0.43% per hour because of precursor exhaustion. Hypoxanthine was readily salvaged or degraded to xanthine with rate constants of 0.5 1/h (95% confidence interval 0.33-0.77) and 0.2 1/h (95% confidence interval 0.09-0.31), respectively. A greater salvage was found in the allopurinol treatment group consistent with its mechanism of action. High hypoxia-induced initial levels of biomarkers were quantified, and were 1.2-fold to 2.9-fold higher in neonates with moderate-to-severe hypoxic-ischemic encephalopathy compared with those with mild hypoxic-ischemic encephalopathy. Half-maximal xanthine oxidoreductase inhibition was achieved with a combined allopurinol and oxypurinol concentration of 0.68 mg/L (95% confidence interval 0.48-0.92), suggesting full xanthine oxidoreductase inhibition during the period studied.Cconclusions: This extended pharmacokinetic-pharmacodynamic model provided an adequate description of the complex hypoxanthine, xanthine, and uric acid metabolism in neonates with hypoxic-ischemic encephalopathy, suggesting a positive allopurinol effect on these biomarkers. The impact of hypoxia on their dynamics was characterized, underlining higher hypoxia-related initial exposure with a more severe hypoxic-ischemic encephalopathy status.
  •  
7.
  • Crombag, Marie-Rose B S, et al. (författare)
  • Does Older Age Lead to Higher Risk for Neutropenia in Patients Treated with Paclitaxel?
  • 2019
  • Ingår i: Pharmaceutical research. - : Springer Science and Business Media LLC. - 0724-8741 .- 1573-904X. ; 36:12, s. 163-
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: There is ongoing concern regarding increased toxicity from paclitaxel in elderly patients, particularly of severe neutropenia. Yet, data so far is controversial and this concern is not supported by a clinically relevant age-dependent difference in pharmacokinetics (PK) of paclitaxel. This study assessed whether age is associated with increased risk for paclitaxel-induced neutropenia.METHODS: Paclitaxel plasma concentration-time data, pooled from multiple different studies, was combined with available respective neutrophil count data during the first treatment cycle. Paclitaxel pharmacokinetic-pharmacodynamic (PK-PD) data was modeled using a non-linear mixed effects approach and a semiphysiological neutropenia model, where systemic paclitaxel exposure was linked to reduced proliferation of neutrophils. The impact of age was evaluated on relevant variables in the model, using a significance threshold of p < 0.005.RESULTS: Paclitaxel PK-PD data was evaluated from 300 patients, with a median age of 65 years (range 23-84 years), containing 116 patients ≥70 years (39%). First cycle neutrophil counts were adequately described by a threshold effect model of paclitaxel on the proliferation rate of neutrophils. Age as a continuous or dichotomous variable (≥70 versus <70 years) did not significantly impact sensitivity of the bone marrow to paclitaxel nor the average maturation time of neutrophils (both p > 0.005), causing a decline in the respective interindividual variability of <1%.CONCLUSION: Results from this large retrospective patient cohort do not suggest elderly patients to be at an increased risk of developing paclitaxel-associated neutropenia during the first treatment cycle. Reflexive dose reductions of paclitaxel in elderly patients are unlikely to improve the risk of severe neutropenia and may be deleterious.
  •  
8.
  • Crombag, Marie-Rose B S, et al. (författare)
  • Exposure to Docetaxel in the Elderly Patient Population : a Population Pharmacokinetic Study.
  • 2019
  • Ingår i: Pharmaceutical research. - : Springer Science and Business Media LLC. - 0724-8741 .- 1573-904X. ; 36:12, s. 181-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Docetaxel is commonly used in elderly patients, who are frequently diagnosed with prostate cancer. Although previous studies revealed no clinically relevant impact of older age on docetaxel pharmacokinetics (PK), this may be masked by indication. Metastatic castration-resistant prostate cancer (mCRPC) patients were reported to have approximately two-times lower systemic exposure compared to patients with other solid tumors. This study assessed the impact of older age on docetaxel PK, also considering the effect of indication on docetaxel PK.METHODS: Prospectively collected docetaxel PK data from patients aged ≥70 was pooled with PK data from an earlier published multicenter study. A 3-compartment population PK model, including multiple covariates, was used to describe docetaxel plasma concentration-time data. We added the effect of prostate cancer (mCRPC and metastatic hormone-sensitive prostate cancer (mHSPC)) on clearance to this model. Hereafter, we evaluated the additional impact of older age on docetaxel clearance, using a significance threshold of p < 0.005.RESULTS: Docetaxel plasma concentration-time data from 157 patients were analyzed. Median age in the total cohort was 67 years (range 31-87), with 49% of the total cohort aged ≥70. The impact of age on docetaxel clearance was statistically significant (p < 0.005). For a typical patient, a 10-year and 20-year increase of age led to a reduction in clearance of 17% and 34%, respectively.CONCLUSION: In this cohort study, age significantly and independently affected docetaxel clearance, showing lower docetaxel clearance in elderly patients. In our cohort, mCRPC and mHSPC patients both had higher clearance than patients with other solid tumors.
  •  
9.
  • Crombag, Marie-Rose B S, et al. (författare)
  • Impact of Older Age on the Exposure of Paclitaxel : a Population Pharmacokinetic Study.
  • 2019
  • Ingår i: Pharmaceutical research. - : Springer Science and Business Media LLC. - 0724-8741 .- 1573-904X. ; 36:2, s. 33-
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: Limited available data suggest that older patients are more prone to develop paclitaxel-induced toxicity than their younger peers. It remains unclear whether this is related to age-dependent pharmacokinetics (PK) of paclitaxel. Primary objective of this study was to determine the influence of older age on the PK of paclitaxel.METHODS: PK data of patients aged ≥70 years who received paclitaxel intravenously at the Netherlands Cancer Institute (NKI) and the Radboud University Medical Center between September 2012 and May 2017 were collected. These prospectively collected data were pooled with previously published databases from multiple clinical trials conducted at the NKI and Erasmus MC Cancer Institute. A previously developed 3-compartment population PK model with saturable distribution and elimination was used to describe paclitaxel plasma concentration-time data. Hereafter, influence of age on paclitaxel PK was assessed in a previously established full covariate model.RESULTS: In total, paclitaxel PK data from 684 patients were available, consisting of 166 patients ≥70 years (24%). Median age of the cohort was 61 years (range 18 to 84 years). The impact of age, either treated as a continuous or dichotomous covariate (<70 versus ≥70 years), on the elimination of paclitaxel was only marginal but statistically significant (both p < 0.001 with no clinically relevant decrease in interindividual variability). For a typical patient, maximal elimination capacity decreased by only 5% for a 10-year increment of age.CONCLUSION: In this extensive multi-center dataset, which included a considerable number of older patients, older age had no clinically relevant impact on paclitaxel PK.
  •  
10.
  • Damoiseaux, David, et al. (författare)
  • Physiologically‐based pharmacokinetic model to predict doxorubicin and paclitaxel exposure in infants through breast milk
  • 2023
  • Ingår i: CPT. - : John Wiley & Sons. - 2163-8306. ; 12:12, s. 1931-1944
  • Tidskriftsartikel (refereegranskat)abstract
    • Limited information is available concerning infant exposure and safety when breastfed by mothers receiving chemotherapy. Whereas defining distribution to breast milk is important to infer drug exposure, infant pharmacokinetics also determine to what extent the infant will be exposed to potential toxic effects. We aimed to assess the impact of chemotherapy containing breast milk on infants by predicting systemic and local (intestinal) exposure of paclitaxel and doxorubicin in infants through breast milk using a physiologically-based pharmacokinetic (PBPK) approach. Whole-body PBPK models of i.v. paclitaxel and doxorubicin were extended from the literature, with an oral absorption component to enable predictions in infants receiving paclitaxel or doxorubicin-containing breast milk. For safety considerations, worst-case scenarios were explored. Finally, paclitaxel and doxorubicin exposures in plasma and intestinal tissue of infants following feeding of breast milk from paclitaxel- or doxorubicin-treated mothers were simulated and breast milk discarding strategies were evaluated. The upper 95th percentile of the predicted peak concentrations in peripheral venous blood were 3.48 and 0.74 nM (0.4%–1.7% and 0.1%–1.8% of on-treatment) for paclitaxel and doxorubicin, respectively. Intestinal exposure reached peak concentrations of 1.0 and 140 μM for paclitaxel and doxorubicin, respectively. Discarding breast milk for the first 3 days after maternal chemotherapy administration reduced systemic and tissue exposures even further, to over 90% and 80% for paclitaxel and doxorubicin, respectively. PBPK simulations of chemotherapy exposure in infants after breastfeeding with chemotherapy containing breast milk suggest that particularly local gastrointestinal adverse events should be monitored, whereas systemic adverse events are not expected.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 50

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy