SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Humm John L.) "

Sökning: WFRF:(Humm John L.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ademuyiwa, Adesoji O., et al. (författare)
  • Determinants of morbidity and mortality following emergency abdominal surgery in children in low-income and middle-income countries
  • 2016
  • Ingår i: BMJ Global Health. - : BMJ Publishing Group Ltd. - 2059-7908. ; 1:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Child health is a key priority on the global health agenda, yet the provision of essential and emergency surgery in children is patchy in resource-poor regions. This study was aimed to determine the mortality risk for emergency abdominal paediatric surgery in low-income countries globally.Methods: Multicentre, international, prospective, cohort study. Self-selected surgical units performing emergency abdominal surgery submitted prespecified data for consecutive children aged <16 years during a 2-week period between July and December 2014. The United Nation's Human Development Index (HDI) was used to stratify countries. The main outcome measure was 30-day postoperative mortality, analysed by multilevel logistic regression.Results: This study included 1409 patients from 253 centres in 43 countries; 282 children were under 2 years of age. Among them, 265 (18.8%) were from low-HDI, 450 (31.9%) from middle-HDI and 694 (49.3%) from high-HDI countries. The most common operations performed were appendectomy, small bowel resection, pyloromyotomy and correction of intussusception. After adjustment for patient and hospital risk factors, child mortality at 30 days was significantly higher in low-HDI (adjusted OR 7.14 (95% CI 2.52 to 20.23), p<0.001) and middle-HDI (4.42 (1.44 to 13.56), p=0.009) countries compared with high-HDI countries, translating to 40 excess deaths per 1000 procedures performed.Conclusions: Adjusted mortality in children following emergency abdominal surgery may be as high as 7 times greater in low-HDI and middle-HDI countries compared with high-HDI countries. Effective provision of emergency essential surgery should be a key priority for global child health agendas.
  •  
2.
  • Thorek, Daniel L J, et al. (författare)
  • Reverse-Contrast Imaging and Targeted Radiation Therapy of Advanced Pancreatic Cancer Models.
  • 2015
  • Ingår i: International Journal of Radiation Oncology, Biology, Physics. - : Elsevier BV. - 0360-3016. ; 93:2, s. 444-453
  • Tidskriftsartikel (refereegranskat)abstract
    • To evaluate the feasibility of delivering experimental radiation therapy to tumors in the mouse pancreas. Imaging and treatment were performed using combined CT (computed tomography)/orthovoltage treatment with a rotating gantry.
  •  
3.
  • Berthon, Beatrice, et al. (författare)
  • PETSTEP : generation of synthetic PET lesions for fast evaluation of segmentation methods
  • 2015
  • Ingår i: Physica medica (Testo stampato). - : Elsevier BV. - 1120-1797 .- 1724-191X. ; 31:8, s. 969-980
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: This work describes PETSTEP (PET Simulator of Tracers via Emission Projection): a faster and more accessible alternative to Monte Carlo (MC) simulation generating realistic PET images, for studies assessing image features and segmentation techniques.Methods: PETSTEP was implemented within Matlab as open source software. It allows generating threedimensional PET images from PET/CT data or synthetic CT and PET maps, with user-drawn lesions and user-set acquisition and reconstruction parameters. PETSTEP was used to reproduce images of the NEMA body phantom acquired on a GE Discovery 690 PET/CT scanner, and simulated with MC for the GE Discovery LS scanner, and to generate realistic Head and Neck scans. Finally the sensitivity (S) and Positive Predictive Value (PPV) of three automatic segmentation methods were compared when applied to the scanner-acquired and PETSTEP-simulated NEMA images.Results: PETSTEP produced 3D phantom and clinical images within 4 and 6 min respectively on a single core 2.7 GHz computer. PETSTEP images of the NEMA phantom had mean intensities within 2% of the scanner-acquired image for both background and largest insert, and 16% larger background Full Width at Half Maximum. Similar results were obtained when comparing PETSTEP images to MC simulated data. The S and PPV obtained with simulated phantom images were statistically significantly lower than for the original images, but led to the same conclusions with respect to the evaluated segmentation methods.Conclusions: PETSTEP allows fast simulation of synthetic images reproducing scanner-acquired PET data and shows great promise for the evaluation of PET segmentation methods.
  •  
4.
  • Frey, Eric C., et al. (författare)
  • Accuracy and Precision of Radioactivity Quantification in Nuclear Medicine Images
  • 2012
  • Ingår i: Seminars in Nuclear Medicine. - : Elsevier BV. - 0001-2998. ; 42:3, s. 208-218
  • Forskningsöversikt (refereegranskat)abstract
    • The ability to reliably quantify activity in nuclear medicine has a number of increasingly important applications. Dosimetry for targeted therapy treatment planning or for approval of new imaging agents requires accurate estimation of the activity in organs, tumors, or voxels at several imaging time points. Another important application is the use of quantitative metrics derived from images, such as the standard uptake value commonly used in positron emission tomography (PET), to diagnose and follow treatment of tumors. These measures require quantification of organ or tumor activities in nuclear medicine images. However, there are a number of physical, patient, and technical factors that limit the quantitative reliability of nuclear medicine images. There have been a large number of improvements in instrumentation, including the development of hybrid single-photon emission computed tomography/computed tomography and PET/computed tomography systems, and reconstruction methods, including the use of statistical iterative reconstruction methods, which have substantially improved the ability to obtain reliable quantitative information from planar, single-photon emission computed tomography, and PET images. Semin Nucl Med 42:208-218 (C) 2012 Elsevier Inc. All rights reserved.
  •  
5.
  • Palm, Stig, 1964, et al. (författare)
  • Microdosimetry of astatine-211 single-cell irradiation: role of daughter polonium-211 diffusion.
  • 2004
  • Ingår i: Medical physics. - : Wiley. - 0094-2405. ; 31:2, s. 218-25
  • Tidskriftsartikel (refereegranskat)abstract
    • A microdosimetric analysis of previously published data on 211At-albumin, free 211At, and 211At-C215 irradiation of Colo-205 cells in a slowly rotating single-cell suspension is presented. A custom-built computer program based on the Monte Carlo method was used to simulate the irradiation and the energy deposition in individual cell nuclei. Separate simulations were made for the assumption that the 211Po atom stays in the position where it is created, and that it diffuses away. The mean event number at which 37% of all cells survived, n37, and the frequency mean specific energy per event, zF, were estimated. The Poisson distribution of events and simulated single and multievent distributions of specific energy were used to find the single-cell specific energy at which the probability of survival is reduced to 37%, z37. The calculated single-cell radiosensitivity values show that 211Po atoms, created on a cell surface by the decay of 211At atoms, will diffuse from the cell during its life-span. The increasing distance to the cell nucleus will drastically decrease the probability of the emitted alpha particle to hit the nucleus. This will result in fewer alpha-particle events in the cell nucleus. For dispersed cells, the diffusion of 211Po atoms will reduce the total dose from cell-bound 211At by a factor of 2.
  •  
6.
  • Schmidtlein, Charles R., et al. (författare)
  • Initial performance studies of a wearable brain positron emission tomography camera based on autonomous thin-film digital Geiger avalanche photodiode arrays
  • 2017
  • Ingår i: Journal of Medical Imaging. - : SPIE - International Society for Optical Engineering. - 2329-4302 .- 2329-4310. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Using analytical and Monte Carlo modeling, we explored performance of a lightweight wearable helmet-shaped brain positron emission tomography (PET), or BET camera, based on thin-film digital Geiger avalanche photodiode arrays with Lutetium-yttrium oxyorthosilicate (LYSO) or LaBr3 scintillators for imaging in vivo human brain function of freely moving and acting subjects. We investigated a spherical cap BET and cylindrical brain PET (CYL) geometries with 250-mm diameter. We also considered a clinical whole-body (WB) LYSO PET/CT scanner. The simulated energy resolutions were 10.8% (LYSO) and 3.3% (LaBr3), and the coincidence window was set at 2 ns. The brain was simulated as a water sphere of uniform F-18 activity with a radius of 100 mm. We found that BET achieved >40% better noise equivalent count (NEC) performance relative to the CYL and >800% than WB. For 10-mm-thick LaBr3 equivalent mass systems, LYSO (7-mm thick) had similar to 40% higher NEC than LaBr3. We found that 1 x 1 x 3 mm scintillator crystals achieved similar to 1.1 mm full-width-half-maximum spatial resolution without parallax errors. Additionally, our simulations showed that LYSO generally outperformed LaBr3 for NEC unless the timing resolution for LaBr3 was considerably smaller than that presently used for LYSO, i.e., well below 300 ps.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy