SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hundal T) "

Sökning: WFRF:(Hundal T)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Ottander, Christina, 1962-, et al. (författare)
  • Photosystem II reaction centres stay intact during low temperature photoinhibition
  • 1993
  • Ingår i: Photosynthesis Research. - 0166-8595 .- 1573-5079. ; 35:2, s. 191-200
  • Tidskriftsartikel (refereegranskat)abstract
    • Photoinhibition of photosynthesis was studied in intact barley leaves at 5 and 20-degrees-C, to reveal if Photosystem II becomes predisposed to photoinhibition at low temperature by 1) creation of excessive excitation of Photosystem II or, 2) inhibition of the repair process of Photosystem II. The light and temperature dependence of the reduction state of Q(A) was measured by modulated fluorescence. Photon flux densities giving 60% of Q(A) in a reduced state at steady-state photosynthesis (300 mu mol m-2 s-1 at 5-degrees-C and 1200 mumol m-2 s-1 at 20-degrees-C) resulted in a depression of the photochemical efficiency of Photosystem II (F(v)/F(m)) at both 5 and 20-degrees-C. Inhibition of F(v)/F(m) occurred with initially similar kinetics at the two temperatures. After 6 h, F(v)/F(m), was inhibited by 30% and had reached steady-state at 20-degrees-C. However, at 5-degrees-C, F(v)/F(m) continued to decrease and after 10 h, F(v)/F(m) was depressed to 55% of control. The light response of the reduction state of Q(A) did not change during photoinhibition at 20-degrees-C, whereas after photoinhibition at 5-degrees-C, the proportion of closed reaction centres at a given photon flux density was 10-20% lower than before photoinhibition. Changes in the D1-content were measured by immunoblotting and by the atrazine binding capacity during photoinhibition at high and low temperatures, with and without the addition of chloramphenicol to block chloroplast encoded protein synthesis. At 20-degrees-C, there was a close correlation between the amount of D1-protein and the photochemical efficiency of photosystem II, both in the presence or in the absence of an active repair cycle. At 5-degrees-C, an accumulation of inactive reaction centres occurred, since the photochemical efficiency of Photosystem II was much more depressed than the loss of D1-protein. Furthermore, at 5-degrees-C the repair cycle was largely inhibited as concluded from the finding that blockage of chloroplast encoded protein synthesis did not enhance the susceptibility to photoinihibition at 5-degrees-C. It is concluded that, the kinetics of the initial decrease of F(v)/F(m) was determined by the reduction state of the primary electron acceptor Q(A), at both temperatures. However, the further suppression of F(v)/F(m) at 5-degrees-C after several hours of photoinhibition implies that the inhibited repair cycle started to have an effect in determining the photochemical efficiency of Photosystem II.
  •  
4.
  •  
5.
  • Styring, Stenbjörn, et al. (författare)
  • Biogenesis, assembly and turnover of photosystem II units - Discussion
  • 2002
  • Ingår i: Philosophical Transactions of the Royal Society B: Biological Sciences. - : The Royal Society. - 1471-2970. ; 357:1426, s. 1459-1460
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Assembly of photosystem II, a multiprotein complex embedded in the thylakoid membrane, requires stoichiometric production of over 20 protein subunits. Since part of the protein subunits are encoded in the chloroplast genome and part in the nucleus, a signalling network operates between the two genetic compartments in order to prevent wasteful production of proteins. Coordinated synthesis of proteins also takes place among the chloroplast–encoded subunits, thus establishing a hierarchy in the protein components that allows a stepwise building of the complex. In addition to this dependence on assembly partners, other factors such as the developmental stage of the plastid and various photosynthesis–related parameters exert a strict control on the accumulation, membrane targeting and assembly of the PSII subunits. Here, we briefly review recent results on this field obtained with three major approaches: biogenesis of photosystem II during the development of chloroplasts from etioplasts, use of photosystem II–specific mutants and photosystem II turnover during its repair cycle.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy