SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hunter CN) "

Sökning: WFRF:(Hunter CN)

  • Resultat 1-10 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • 2021
  • swepub:Mat__t
  •  
3.
  • Abel, I, et al. (författare)
  • Overview of the JET results with the ITER-like wall
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10, s. 104002-
  • Tidskriftsartikel (refereegranskat)abstract
    • Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Z(eff) (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H-mode regimes with H-98,H-y2 close to 1 and beta(N) similar to 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal temperatures and confinement. Compared with the carbon wall, major disruptions with the new wall show a lower radiated power and a slower current quench. The higher heat loads on Be wall plasma-facing components due to lower radiation made the routine use of massive gas injection for disruption mitigation essential.
  •  
4.
  • Billsten, Helena, et al. (författare)
  • Dynamics of energy transfer from lycopene to bacteriochlorophyll in genetically-modified LH2 complexes of Rhodobacter sphaeroides
  • 2002
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 41:12, s. 4127-4136
  • Tidskriftsartikel (refereegranskat)abstract
    • LH2 complexes from Rb. sphaeroides were modified genetically so that lycopene, with I I saturated double bonds, replaced the native carotenoids which contain 10 saturated double bonds. Tuning the S, level of the carotenoid in LH2 in this way affected the dynamics of energy transfer within LH2, which were investigated using both steady-state and time-resolved techniques. The S I energy of lycopene in n-hexane was determined to be similar to12 500 +/- 150 cm(-1), by direct measurement of the S-1-S-2 transient absorption spectrum using a femtosecond IR-probing technique, thus placing an upper limit on the S, energy of lycopene in the LH2 complex. Fluorescence emission and excitation spectra demonstrated that energy can be transferred from lycopene to the bacteriochlorophyll molecules within this LH2 complex. The energy-transfer dynamics within the mutant complex were compared to wild-type LH2 from Rb. sphaeroides containing the carotenoid spheroidene and from Rs. molischian1l7n, in which lycopene is the native carotenoid. The results show that the overall efficiency for Crt --> B850 energy transfer is similar to80% in lyco-LH2 and similar to95% in WT-LH2 of Rb. sphaeroides. The difference in overall Crt --> BChl transfer efficiency of lyco-LH2 and WT-LH2 mainly relates to the low efficiency of the Crt S-1 --> BChl pathway for complexes containing lycopene, which was 20% in lyco-LH2. These results show that in an LH2 complex where the Crt Si energy is sufficiently high to provide efficient spectral overlap with both B800 and B850 Q(y) states, energy transfer via the Crt S, state occurs to both pigments. However, the introduction of lycopene into the Rb. sphaeroides LH2 complex lowers the S-1 level of the carotenoid sufficiently to prevent efficient transfer of energy to the B 800 Q, state, leaving only the Crt S-1 --> B 850 channel, strongly suggesting that Crt S-1 --> BChl energy transfer is controlled by the relative Crt S-1 and BChl Q(y) energies.
  •  
5.
  •  
6.
  •  
7.
  • Fidder, H, et al. (författare)
  • Optical dephasing in photosynthetic pigment-protein complexes
  • 1998
  • Ingår i: CHEMICAL PHYSICS. - : ELSEVIER SCIENCE BV. - 0301-0104. ; 233:2-3, s. 311-322
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • We have studied optical dephasing in a number of pigment-protein complexes. Remarkably we find that the energies of the modes involved in the dephasing of the optical transition of the 825 nm band of the FMO-complex of Chlorobium tepidum, the blue-shifted
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy